Xiyan Rui , Xinran Zhao , Nailian Zhang , Yuzhou Ding , Chie Seki , Maiko Ono , Makoto Higuchi , Ming-Rong Zhang , Yong Chu , Ruonan Wei , Miaomiao Xu , Chao Cheng , Changjing Zuo , Yasuyuki Kimura , Ruiqing Ni , Mototora Kai , Mei Tian , Chunyan Yuan , Bin Ji
{"title":"开发用于阿尔茨海默病和 Tauopathy 小鼠模型淀粉样蛋白和 Tau 沉积成像的新型放射性碘化化合物","authors":"Xiyan Rui , Xinran Zhao , Nailian Zhang , Yuzhou Ding , Chie Seki , Maiko Ono , Makoto Higuchi , Ming-Rong Zhang , Yong Chu , Ruonan Wei , Miaomiao Xu , Chao Cheng , Changjing Zuo , Yasuyuki Kimura , Ruiqing Ni , Mototora Kai , Mei Tian , Chunyan Yuan , Bin Ji","doi":"10.1016/j.neuroimage.2024.120947","DOIUrl":null,"url":null,"abstract":"<div><div>Non-invasive determination of amyloid-β peptide (Aβ) and tau deposition are important for early diagnosis and therapeutic intervention for Alzheimer's disease (AD) and non-AD tauopathies. In the present study, we investigated the capacity of a novel radioiodinated compound AD-DRK (<sup>123/125</sup>I-AD-DRK) with 50% inhibitory concentrations of 11 nM and 2 nM for Aβ and tau aggregates, respectively, as a single photon emission computed tomography (SPECT) ligand in living brains. In vitro and ex vivo autoradiography with <sup>125</sup>I-AD-DRK was performed in postmortem human and two transgenic (Tg) mice lines with either fibrillar Aβ or tau accumulation, APP23 and rTg4510 mice. SPECT imaging of <sup>123</sup>I-AD-DRK was performed in APP23 mice to investigate the ability of AD-DRK to visualize fibrillar protein deposition in the living brain. <em>In-vitro</em> autoradiogram of <sup>125</sup>I-AD-DRK showed high specific radioactivity accumulation in the temporal cortex and hippocampus of AD patients and the motor cortex of progressive supranuclear palsy (PSP) patients enriched by Aβ and/or tau aggregates. <em>Ex-vivo</em> autoradiographic images also demonstrated a significant increase in <sup>125</sup>I-AD-DRK binding in the forebrain of both APP23 and rTg450 mice compared to their corresponding non-Tg littermates. SPECT imaging successfully captured Aβ deposition in the living brain of aged APP23 mice. The present study developed a novel high-contrast SPECT agent for assisting the diagnosis of AD and non-AD tauopathies, likely benefiting from its affinity for both fibrillar Aβ and tau.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"303 ","pages":"Article 120947"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel radioiodinated compound for amyloid and tau deposition imaging in Alzheimer's disease and tauopathy mouse models\",\"authors\":\"Xiyan Rui , Xinran Zhao , Nailian Zhang , Yuzhou Ding , Chie Seki , Maiko Ono , Makoto Higuchi , Ming-Rong Zhang , Yong Chu , Ruonan Wei , Miaomiao Xu , Chao Cheng , Changjing Zuo , Yasuyuki Kimura , Ruiqing Ni , Mototora Kai , Mei Tian , Chunyan Yuan , Bin Ji\",\"doi\":\"10.1016/j.neuroimage.2024.120947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-invasive determination of amyloid-β peptide (Aβ) and tau deposition are important for early diagnosis and therapeutic intervention for Alzheimer's disease (AD) and non-AD tauopathies. In the present study, we investigated the capacity of a novel radioiodinated compound AD-DRK (<sup>123/125</sup>I-AD-DRK) with 50% inhibitory concentrations of 11 nM and 2 nM for Aβ and tau aggregates, respectively, as a single photon emission computed tomography (SPECT) ligand in living brains. In vitro and ex vivo autoradiography with <sup>125</sup>I-AD-DRK was performed in postmortem human and two transgenic (Tg) mice lines with either fibrillar Aβ or tau accumulation, APP23 and rTg4510 mice. SPECT imaging of <sup>123</sup>I-AD-DRK was performed in APP23 mice to investigate the ability of AD-DRK to visualize fibrillar protein deposition in the living brain. <em>In-vitro</em> autoradiogram of <sup>125</sup>I-AD-DRK showed high specific radioactivity accumulation in the temporal cortex and hippocampus of AD patients and the motor cortex of progressive supranuclear palsy (PSP) patients enriched by Aβ and/or tau aggregates. <em>Ex-vivo</em> autoradiographic images also demonstrated a significant increase in <sup>125</sup>I-AD-DRK binding in the forebrain of both APP23 and rTg450 mice compared to their corresponding non-Tg littermates. SPECT imaging successfully captured Aβ deposition in the living brain of aged APP23 mice. The present study developed a novel high-contrast SPECT agent for assisting the diagnosis of AD and non-AD tauopathies, likely benefiting from its affinity for both fibrillar Aβ and tau.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"303 \",\"pages\":\"Article 120947\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811924004440\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924004440","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Development of a novel radioiodinated compound for amyloid and tau deposition imaging in Alzheimer's disease and tauopathy mouse models
Non-invasive determination of amyloid-β peptide (Aβ) and tau deposition are important for early diagnosis and therapeutic intervention for Alzheimer's disease (AD) and non-AD tauopathies. In the present study, we investigated the capacity of a novel radioiodinated compound AD-DRK (123/125I-AD-DRK) with 50% inhibitory concentrations of 11 nM and 2 nM for Aβ and tau aggregates, respectively, as a single photon emission computed tomography (SPECT) ligand in living brains. In vitro and ex vivo autoradiography with 125I-AD-DRK was performed in postmortem human and two transgenic (Tg) mice lines with either fibrillar Aβ or tau accumulation, APP23 and rTg4510 mice. SPECT imaging of 123I-AD-DRK was performed in APP23 mice to investigate the ability of AD-DRK to visualize fibrillar protein deposition in the living brain. In-vitro autoradiogram of 125I-AD-DRK showed high specific radioactivity accumulation in the temporal cortex and hippocampus of AD patients and the motor cortex of progressive supranuclear palsy (PSP) patients enriched by Aβ and/or tau aggregates. Ex-vivo autoradiographic images also demonstrated a significant increase in 125I-AD-DRK binding in the forebrain of both APP23 and rTg450 mice compared to their corresponding non-Tg littermates. SPECT imaging successfully captured Aβ deposition in the living brain of aged APP23 mice. The present study developed a novel high-contrast SPECT agent for assisting the diagnosis of AD and non-AD tauopathies, likely benefiting from its affinity for both fibrillar Aβ and tau.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.