使用序列特征嵌入和正则化多核支持向量机对阿尔茨海默病前驱期进行多类分类

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-11-19 DOI:10.1016/j.neuroimage.2024.120929
Oyekanmi O Olatunde, Kehinde S Oyetunde, Jihun Han, Mohammad T Khasawneh, Hyunsoo Yoon
{"title":"使用序列特征嵌入和正则化多核支持向量机对阿尔茨海默病前驱期进行多类分类","authors":"Oyekanmi O Olatunde, Kehinde S Oyetunde, Jihun Han, Mohammad T Khasawneh, Hyunsoo Yoon","doi":"10.1016/j.neuroimage.2024.120929","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of patients in the cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) stages of neurodegeneration is crucial for early treatment interventions. However, the heterogeneity of MCI data samples poses a challenge for CN vs. MCI vs. AD multiclass classification, as some samples are closer to AD while others are closer to CN in the feature space. Previous attempts to address this challenge produced inaccurate results, leading most frameworks to break the assessment into binary classification tasks such as AD vs. CN, AD vs. MCI, and CN vs. MCI. Other methods proposed sequential binary classifications such as CN vs. others and dividing others into AD vs. MCI. While those approaches may have yielded encouraging results, the sequential binary classification method makes interpretation and comparison with other frameworks challenging and subjective. Those frameworks exhibited varying accuracy scores for different binary tasks, making it unclear how to compare the model performance with other direct multiclass methods. Therefore, we introduce a classification framework comprising unsupervised ensemble manifold regularized sparse low-rank approximation and regularized multikernel support vector machine (SVM). This framework first extracts a joint feature embedding from MRI and PET neuroimaging features, which were then combined with the Apoe4, Adas11, MPACC digits, and Intracranial volume features using a regularized multikernel SVM. Using that framework, we achieved a state-of-the-art (SOTA) result in a CN vs. MCI vs. AD multiclass classification (mean accuracy: 84.87±6.09, F1 score: 84.83±6.12 vs 67.69). The methods generalize well to binary classification tasks, achieving SOTA results in all but the CN vs. MCI category, which was slightly lower than the best score by just 0.2%.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"120929"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiclass Classification of Alzheimer's Disease Prodromal Stages using Sequential Feature Embeddings and Regularized Multikernel Support Vector Machine.\",\"authors\":\"Oyekanmi O Olatunde, Kehinde S Oyetunde, Jihun Han, Mohammad T Khasawneh, Hyunsoo Yoon\",\"doi\":\"10.1016/j.neuroimage.2024.120929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection of patients in the cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) stages of neurodegeneration is crucial for early treatment interventions. However, the heterogeneity of MCI data samples poses a challenge for CN vs. MCI vs. AD multiclass classification, as some samples are closer to AD while others are closer to CN in the feature space. Previous attempts to address this challenge produced inaccurate results, leading most frameworks to break the assessment into binary classification tasks such as AD vs. CN, AD vs. MCI, and CN vs. MCI. Other methods proposed sequential binary classifications such as CN vs. others and dividing others into AD vs. MCI. While those approaches may have yielded encouraging results, the sequential binary classification method makes interpretation and comparison with other frameworks challenging and subjective. Those frameworks exhibited varying accuracy scores for different binary tasks, making it unclear how to compare the model performance with other direct multiclass methods. Therefore, we introduce a classification framework comprising unsupervised ensemble manifold regularized sparse low-rank approximation and regularized multikernel support vector machine (SVM). This framework first extracts a joint feature embedding from MRI and PET neuroimaging features, which were then combined with the Apoe4, Adas11, MPACC digits, and Intracranial volume features using a regularized multikernel SVM. Using that framework, we achieved a state-of-the-art (SOTA) result in a CN vs. MCI vs. AD multiclass classification (mean accuracy: 84.87±6.09, F1 score: 84.83±6.12 vs 67.69). The methods generalize well to binary classification tasks, achieving SOTA results in all but the CN vs. MCI category, which was slightly lower than the best score by just 0.2%.</p>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\" \",\"pages\":\"120929\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroimage.2024.120929\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2024.120929","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

检测处于认知正常(CN)、轻度认知障碍(MCI)和阿尔茨海默病(AD)神经变性阶段的患者对早期治疗干预至关重要。然而,MCI 数据样本的异质性给 CN vs. MCI vs. AD 多类分类带来了挑战,因为在特征空间中,一些样本更接近 AD,而另一些样本则更接近 CN。以往应对这一挑战的尝试产生了不准确的结果,导致大多数框架将评估分成二元分类任务,如 AD vs. CN、AD vs. MCI 和 CN vs. MCI。其他方法则提出了连续的二元分类,如 CN vs. 其他,并将其他分为 AD vs. MCI。虽然这些方法可能会产生令人鼓舞的结果,但顺序二元分类法使得解释和与其他框架比较具有挑战性和主观性。这些框架在不同的二元任务中表现出了不同的准确度得分,因此不清楚如何将模型性能与其他直接多分类方法进行比较。因此,我们引入了一个由无监督集合流形正则化稀疏低阶近似和正则化多核支持向量机(SVM)组成的分类框架。该框架首先从 MRI 和 PET 神经成像特征中提取联合特征嵌入,然后使用正则化多核 SVM 将其与 Apoe4、Adas11、MPACC 数字和颅内容积特征相结合。利用该框架,我们在 CN vs. MCI vs. AD 多类分类中取得了最先进(SOTA)的结果(平均准确率:84.87±6.09,F1 分数:84.83±6.12 vs 67.69)。这些方法对二元分类任务有很好的普适性,除了在 CN vs. MCI 分类中略低于最佳得分 0.2% 外,在其他所有分类中都取得了 SOTA 结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiclass Classification of Alzheimer's Disease Prodromal Stages using Sequential Feature Embeddings and Regularized Multikernel Support Vector Machine.

The detection of patients in the cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) stages of neurodegeneration is crucial for early treatment interventions. However, the heterogeneity of MCI data samples poses a challenge for CN vs. MCI vs. AD multiclass classification, as some samples are closer to AD while others are closer to CN in the feature space. Previous attempts to address this challenge produced inaccurate results, leading most frameworks to break the assessment into binary classification tasks such as AD vs. CN, AD vs. MCI, and CN vs. MCI. Other methods proposed sequential binary classifications such as CN vs. others and dividing others into AD vs. MCI. While those approaches may have yielded encouraging results, the sequential binary classification method makes interpretation and comparison with other frameworks challenging and subjective. Those frameworks exhibited varying accuracy scores for different binary tasks, making it unclear how to compare the model performance with other direct multiclass methods. Therefore, we introduce a classification framework comprising unsupervised ensemble manifold regularized sparse low-rank approximation and regularized multikernel support vector machine (SVM). This framework first extracts a joint feature embedding from MRI and PET neuroimaging features, which were then combined with the Apoe4, Adas11, MPACC digits, and Intracranial volume features using a regularized multikernel SVM. Using that framework, we achieved a state-of-the-art (SOTA) result in a CN vs. MCI vs. AD multiclass classification (mean accuracy: 84.87±6.09, F1 score: 84.83±6.12 vs 67.69). The methods generalize well to binary classification tasks, achieving SOTA results in all but the CN vs. MCI category, which was slightly lower than the best score by just 0.2%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Differentiating atypical parkinsonian syndromes with hyperbolic few-shot contrastive learning Exploring the relationship between hallucination proneness and brain morphology Biological mechanism of sex differences in mental rotation: Evidence from multimodal MRI, transcriptomic and receptor/transporter data. Different oscillatory mechanisms of dementia-related diseases with cognitive impairment in closed-eye state. Generative Modeling of the Circle of Willis Using 3D-StyleGAN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1