Kylie Foutch , Iris Tilton , Aundrea Cooney , Cole Bender , Collin Licharz , Megan Baldemor , Caitlyn Rock , Atehsa Asal Sahagun , Robert Brock , Chloe Franzia , Mary Francis Garcia , Raghav Gupta , Christopher Arellano Reyes , Mariyam Lokhandwala , Daniela Moura , Hirofumi Noguchi , Laura Cocas
{"title":"青春期癫痫会影响哺乳动物前脑中少突胶质细胞的成熟、神经元-胶质细胞回路的形成和髓鞘化。","authors":"Kylie Foutch , Iris Tilton , Aundrea Cooney , Cole Bender , Collin Licharz , Megan Baldemor , Caitlyn Rock , Atehsa Asal Sahagun , Robert Brock , Chloe Franzia , Mary Francis Garcia , Raghav Gupta , Christopher Arellano Reyes , Mariyam Lokhandwala , Daniela Moura , Hirofumi Noguchi , Laura Cocas","doi":"10.1016/j.neuroscience.2024.11.050","DOIUrl":null,"url":null,"abstract":"<div><div>Oligodendrocyte progenitor cells differentiate into oligodendrocytes, which myelinate axons during development and following demyelinating injury. However, the mechanisms that drive the timing and specificity of developmental myelination are not well understood. We hypothesized that oligodendrocyte progenitor cell proliferation and differentiation would be affected by pathological neuronal activity during adolescent development when developmental myelination is occurring and that this would also impact neuron-to-oligodendrocyte progenitor cell connectivity and myelination. We used kainic acid to induce a seizure in mice, treating equal numbers of males and females, in sample sizes of at least five animals. We found that the seizures led to increased cell death overall, specifically in the oligodendrocyte-lineage cells. We found that both oligodendrocyte progenitor cell proliferation and overall numbers increased, and the number of mature oligodendrocytes decreased. We found a decrease in myelin in the cerebral cortex, corpus callosum, and hippocampus after a seizure. We observed an increase in demyelinating lesions, but no change in neuronal process length, in brains after seizure, suggesting that the demyelination was due primarily to the loss of both oligodendrocyte-lineage cells. We found that Kir4.1 potassium channel expression on oligodendrocyte progenitor cells decreased after seizure, but not mature oligodendrocytes. Finally, we found a decrease in neuron-to-oligodendrocyte progenitor cell connections in seizure mice compared to controls. These findings provide insight into the response of the adolescent brain to seizure activity, as well as how seizures affect oligodendrocyte development, neuronal-glial connections, and myelin formation.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"564 ","pages":"Pages 144-159"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adolescent seizure impacts oligodendrocyte maturation, neuronal-glial circuit Formation, and myelination in the mammalian forebrain\",\"authors\":\"Kylie Foutch , Iris Tilton , Aundrea Cooney , Cole Bender , Collin Licharz , Megan Baldemor , Caitlyn Rock , Atehsa Asal Sahagun , Robert Brock , Chloe Franzia , Mary Francis Garcia , Raghav Gupta , Christopher Arellano Reyes , Mariyam Lokhandwala , Daniela Moura , Hirofumi Noguchi , Laura Cocas\",\"doi\":\"10.1016/j.neuroscience.2024.11.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oligodendrocyte progenitor cells differentiate into oligodendrocytes, which myelinate axons during development and following demyelinating injury. However, the mechanisms that drive the timing and specificity of developmental myelination are not well understood. We hypothesized that oligodendrocyte progenitor cell proliferation and differentiation would be affected by pathological neuronal activity during adolescent development when developmental myelination is occurring and that this would also impact neuron-to-oligodendrocyte progenitor cell connectivity and myelination. We used kainic acid to induce a seizure in mice, treating equal numbers of males and females, in sample sizes of at least five animals. We found that the seizures led to increased cell death overall, specifically in the oligodendrocyte-lineage cells. We found that both oligodendrocyte progenitor cell proliferation and overall numbers increased, and the number of mature oligodendrocytes decreased. We found a decrease in myelin in the cerebral cortex, corpus callosum, and hippocampus after a seizure. We observed an increase in demyelinating lesions, but no change in neuronal process length, in brains after seizure, suggesting that the demyelination was due primarily to the loss of both oligodendrocyte-lineage cells. We found that Kir4.1 potassium channel expression on oligodendrocyte progenitor cells decreased after seizure, but not mature oligodendrocytes. Finally, we found a decrease in neuron-to-oligodendrocyte progenitor cell connections in seizure mice compared to controls. These findings provide insight into the response of the adolescent brain to seizure activity, as well as how seizures affect oligodendrocyte development, neuronal-glial connections, and myelin formation.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"564 \",\"pages\":\"Pages 144-159\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452224006377\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224006377","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Adolescent seizure impacts oligodendrocyte maturation, neuronal-glial circuit Formation, and myelination in the mammalian forebrain
Oligodendrocyte progenitor cells differentiate into oligodendrocytes, which myelinate axons during development and following demyelinating injury. However, the mechanisms that drive the timing and specificity of developmental myelination are not well understood. We hypothesized that oligodendrocyte progenitor cell proliferation and differentiation would be affected by pathological neuronal activity during adolescent development when developmental myelination is occurring and that this would also impact neuron-to-oligodendrocyte progenitor cell connectivity and myelination. We used kainic acid to induce a seizure in mice, treating equal numbers of males and females, in sample sizes of at least five animals. We found that the seizures led to increased cell death overall, specifically in the oligodendrocyte-lineage cells. We found that both oligodendrocyte progenitor cell proliferation and overall numbers increased, and the number of mature oligodendrocytes decreased. We found a decrease in myelin in the cerebral cortex, corpus callosum, and hippocampus after a seizure. We observed an increase in demyelinating lesions, but no change in neuronal process length, in brains after seizure, suggesting that the demyelination was due primarily to the loss of both oligodendrocyte-lineage cells. We found that Kir4.1 potassium channel expression on oligodendrocyte progenitor cells decreased after seizure, but not mature oligodendrocytes. Finally, we found a decrease in neuron-to-oligodendrocyte progenitor cell connections in seizure mice compared to controls. These findings provide insight into the response of the adolescent brain to seizure activity, as well as how seizures affect oligodendrocyte development, neuronal-glial connections, and myelin formation.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.