基于铬化相变材料 Ge2Sb2Se4Te1 的可重构二元衍射光学神经网络。

IF 3.2 2区 物理与天体物理 Q2 OPTICS Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.539235
Ziwei Fu, Tingzhao Fu, Hao Wu, Zhihong Zhu, Jianfa Zhang
{"title":"基于铬化相变材料 Ge2Sb2Se4Te1 的可重构二元衍射光学神经网络。","authors":"Ziwei Fu, Tingzhao Fu, Hao Wu, Zhihong Zhu, Jianfa Zhang","doi":"10.1364/OE.539235","DOIUrl":null,"url":null,"abstract":"<p><p>Diffractive optical neural networks (DONNs) possess unique advantages such as light-speed computing, low energy consumption, and parallel processing, which have obtained increasing attention in recent years. However, once conventional DONNs are fabricated, their function remains fixed, which greatly limits the applications of DONNs. Thus, we propose a reconfigurable DONN framework based on a repeatable and non-volatile phase change material Ge<sub>2</sub>Sb<sub>2</sub>Se<sub>4</sub>Te<sub>1</sub>(GSST). By utilizing phase modulation units made of GSST to form the network's neurons, we can flexibly switch the functions of the DONN. Meanwhile, we apply a binary training algorithm to train the DONN weights to binary values of 0 and π, which is beneficial for simplifying the design and fabrication of DONN while reducing errors during physical implementation. Furthermore, the reconfigurable binary DONN has been trained as a handwritten digit classifier and a fashion product classifier to validate the feasibility of the framework. This work provides an efficient and flexible control mechanism for reconfigurable DONNs, with potential applications in various complex tasks.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"41433-41444"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable binary diffractive optical neural network based on chalcogenide phase change material Ge<sub>2</sub>Sb<sub>2</sub>Se<sub>4</sub>Te<sub>1</sub>.\",\"authors\":\"Ziwei Fu, Tingzhao Fu, Hao Wu, Zhihong Zhu, Jianfa Zhang\",\"doi\":\"10.1364/OE.539235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffractive optical neural networks (DONNs) possess unique advantages such as light-speed computing, low energy consumption, and parallel processing, which have obtained increasing attention in recent years. However, once conventional DONNs are fabricated, their function remains fixed, which greatly limits the applications of DONNs. Thus, we propose a reconfigurable DONN framework based on a repeatable and non-volatile phase change material Ge<sub>2</sub>Sb<sub>2</sub>Se<sub>4</sub>Te<sub>1</sub>(GSST). By utilizing phase modulation units made of GSST to form the network's neurons, we can flexibly switch the functions of the DONN. Meanwhile, we apply a binary training algorithm to train the DONN weights to binary values of 0 and π, which is beneficial for simplifying the design and fabrication of DONN while reducing errors during physical implementation. Furthermore, the reconfigurable binary DONN has been trained as a handwritten digit classifier and a fashion product classifier to validate the feasibility of the framework. This work provides an efficient and flexible control mechanism for reconfigurable DONNs, with potential applications in various complex tasks.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 23\",\"pages\":\"41433-41444\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.539235\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.539235","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

衍射光神经网络(DONNs)具有光速计算、低能耗和并行处理等独特优势,近年来受到越来越多的关注。然而,传统的衍射光神经网络一旦制作完成,其功能就会固定不变,这极大地限制了衍射光神经网络的应用。因此,我们提出了一种基于可重复和非易失相变材料 Ge2Sb2Se4Te1(GSST)的可重构 DONN 框架。利用由 GSST 制成的相位调制单元构成网络的神经元,我们可以灵活地切换 DONN 的功能。同时,我们采用二进制训练算法将 DONN 权重训练为 0 和 π 的二进制值,这有利于简化 DONN 的设计和制造,同时减少物理实现过程中的误差。此外,还将可重构二进制 DONN 作为手写数字分类器和时尚产品分类器进行了训练,以验证该框架的可行性。这项工作为可重构 DONN 提供了一种高效灵活的控制机制,有望应用于各种复杂任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconfigurable binary diffractive optical neural network based on chalcogenide phase change material Ge2Sb2Se4Te1.

Diffractive optical neural networks (DONNs) possess unique advantages such as light-speed computing, low energy consumption, and parallel processing, which have obtained increasing attention in recent years. However, once conventional DONNs are fabricated, their function remains fixed, which greatly limits the applications of DONNs. Thus, we propose a reconfigurable DONN framework based on a repeatable and non-volatile phase change material Ge2Sb2Se4Te1(GSST). By utilizing phase modulation units made of GSST to form the network's neurons, we can flexibly switch the functions of the DONN. Meanwhile, we apply a binary training algorithm to train the DONN weights to binary values of 0 and π, which is beneficial for simplifying the design and fabrication of DONN while reducing errors during physical implementation. Furthermore, the reconfigurable binary DONN has been trained as a handwritten digit classifier and a fashion product classifier to validate the feasibility of the framework. This work provides an efficient and flexible control mechanism for reconfigurable DONNs, with potential applications in various complex tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
期刊最新文献
Adaptive generation of optical single-sideband signal with dually modulated EML. Manipulating reflection-type all-dielectric non-local metasurfaces via the parity of a particle number. SSBI counteraction technology in a single photodetector-based direct detection system receiving an independent dual-single sideband signal. Adaptive-modulated fast fluctuation super-resolution microscopy. Measurement and analysis of photoacoustic pressure induced by weak microsecond pulsed light.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1