人工智能在预测腹腔镜胃癌根治术后并发症风险方面的进展:重大飞跃。

IF 4.3 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY World Journal of Gastroenterology Pub Date : 2024-11-21 DOI:10.3748/wjg.v30.i43.4669
Hong-Niu Wang, Jia-Hao An, Liang Zong
{"title":"人工智能在预测腹腔镜胃癌根治术后并发症风险方面的进展:重大飞跃。","authors":"Hong-Niu Wang, Jia-Hao An, Liang Zong","doi":"10.3748/wjg.v30.i43.4669","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent paper, Hong <i>et al</i> developed an artificial intelligence (AI)-driven predictive scoring system for potential complications following laparoscopic radical gastrectomy for gastric cancer patients. They demonstrated that integrating AI with random forest models significantly improved the preoperative prediction and patient outcome management accuracy. By incorporating data from multiple centers, their model ensures standardization, reliability, and broad applicability, distinguishing it from the prior models. The present study highlights AI's potential in clinical decision support, aiding in the preoperative and postoperative management of gastric cancer patients. Our findings may pave the way for future prospective studies to further enhance AI-supported diagnoses in clinical practice.</p>","PeriodicalId":23778,"journal":{"name":"World Journal of Gastroenterology","volume":"30 43","pages":"4669-4671"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in artificial intelligence for predicting complication risks post-laparoscopic radical gastrectomy for gastric cancer: A significant leap forward.\",\"authors\":\"Hong-Niu Wang, Jia-Hao An, Liang Zong\",\"doi\":\"10.3748/wjg.v30.i43.4669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recent paper, Hong <i>et al</i> developed an artificial intelligence (AI)-driven predictive scoring system for potential complications following laparoscopic radical gastrectomy for gastric cancer patients. They demonstrated that integrating AI with random forest models significantly improved the preoperative prediction and patient outcome management accuracy. By incorporating data from multiple centers, their model ensures standardization, reliability, and broad applicability, distinguishing it from the prior models. The present study highlights AI's potential in clinical decision support, aiding in the preoperative and postoperative management of gastric cancer patients. Our findings may pave the way for future prospective studies to further enhance AI-supported diagnoses in clinical practice.</p>\",\"PeriodicalId\":23778,\"journal\":{\"name\":\"World Journal of Gastroenterology\",\"volume\":\"30 43\",\"pages\":\"4669-4671\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Gastroenterology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3748/wjg.v30.i43.4669\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3748/wjg.v30.i43.4669","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇论文中,Hong 等人开发了一种人工智能(AI)驱动的预测评分系统,用于预测胃癌患者腹腔镜根治性胃切除术后可能出现的并发症。他们证明,将人工智能与随机森林模型相结合,可显著提高术前预测和患者预后管理的准确性。通过整合多个中心的数据,他们的模型确保了标准化、可靠性和广泛的适用性,使其有别于之前的模型。本研究强调了人工智能在临床决策支持方面的潜力,有助于胃癌患者的术前和术后管理。我们的研究结果可能会为未来的前瞻性研究铺平道路,从而进一步加强人工智能在临床实践中的诊断支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in artificial intelligence for predicting complication risks post-laparoscopic radical gastrectomy for gastric cancer: A significant leap forward.

In a recent paper, Hong et al developed an artificial intelligence (AI)-driven predictive scoring system for potential complications following laparoscopic radical gastrectomy for gastric cancer patients. They demonstrated that integrating AI with random forest models significantly improved the preoperative prediction and patient outcome management accuracy. By incorporating data from multiple centers, their model ensures standardization, reliability, and broad applicability, distinguishing it from the prior models. The present study highlights AI's potential in clinical decision support, aiding in the preoperative and postoperative management of gastric cancer patients. Our findings may pave the way for future prospective studies to further enhance AI-supported diagnoses in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Gastroenterology
World Journal of Gastroenterology 医学-胃肠肝病学
CiteScore
7.80
自引率
4.70%
发文量
464
审稿时长
2.4 months
期刊介绍: The primary aims of the WJG are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in gastroenterology and hepatology.
期刊最新文献
Advances in artificial intelligence for predicting complication risks post-laparoscopic radical gastrectomy for gastric cancer: A significant leap forward. Comprehensive approach to esophageal variceal bleeding: From prevention to treatment. Elafibranor alleviates alcohol-related liver fibrosis by restoring intestinal barrier function. Improving early diagnosis of multiple endocrine neoplasia type 1 by assessing the gastrointestinal symptoms, hypercalcemia, and elevated serum gastrin. Interplay of gut microbiota, glucagon-like peptide receptor agonists, and nutrition: New frontiers in metabolic dysfunction-associated steatotic liver disease therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1