具有极高多态性的多卷跳场神经网络及其在物联网视频加密中的应用。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-11-17 DOI:10.1016/j.neunet.2024.106904
Fei Yu, Yue Lin, Wei Yao, Shuo Cai, Hairong Lin, Yi Li
{"title":"具有极高多态性的多卷跳场神经网络及其在物联网视频加密中的应用。","authors":"Fei Yu, Yue Lin, Wei Yao, Shuo Cai, Hairong Lin, Yi Li","doi":"10.1016/j.neunet.2024.106904","DOIUrl":null,"url":null,"abstract":"<p><p>In Industrial Internet of Things (IIoT) production and operation processes, a substantial amount of video data is generated, often containing sensitive personal and commercial information. This paper proposed three new multiscroll Hopfield neural network (MHNN) systems by utilizing an improved segmented nonlinear non-ideal magnetic-controlled memristor model for electromagnetic radiation. Through dynamical methods, the constructed neural network's multidimensional multiscroll attractors and initial offset boosting behavior are analyzed. The observed initial offset boosting behavior demonstrates the system has extreme multistability. Secondly, a video encryption application based on the MHNN system is implemented on the Raspberry Pi platform. This approach encrypts each frame of the extracted video image using a novel encryption algorithm through frame-by-frame encryption, achieving significant encryption results with an information entropy calculation result of 7.9973. This provides strong protection for video data generated in IIoT. Finally, the proposed MHNN system is implemented on Field-Programmable Gate Array (FPGA) digital hardware platform.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"182 ","pages":"106904"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT.\",\"authors\":\"Fei Yu, Yue Lin, Wei Yao, Shuo Cai, Hairong Lin, Yi Li\",\"doi\":\"10.1016/j.neunet.2024.106904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Industrial Internet of Things (IIoT) production and operation processes, a substantial amount of video data is generated, often containing sensitive personal and commercial information. This paper proposed three new multiscroll Hopfield neural network (MHNN) systems by utilizing an improved segmented nonlinear non-ideal magnetic-controlled memristor model for electromagnetic radiation. Through dynamical methods, the constructed neural network's multidimensional multiscroll attractors and initial offset boosting behavior are analyzed. The observed initial offset boosting behavior demonstrates the system has extreme multistability. Secondly, a video encryption application based on the MHNN system is implemented on the Raspberry Pi platform. This approach encrypts each frame of the extracted video image using a novel encryption algorithm through frame-by-frame encryption, achieving significant encryption results with an information entropy calculation result of 7.9973. This provides strong protection for video data generated in IIoT. Finally, the proposed MHNN system is implemented on Field-Programmable Gate Array (FPGA) digital hardware platform.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"182 \",\"pages\":\"106904\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106904\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106904","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在工业物联网(IIoT)的生产和运营过程中,会产生大量视频数据,其中往往包含敏感的个人信息和商业信息。本文利用改进的电磁辐射分段非线性非理想磁控忆阻器模型,提出了三种新型多卷霍普菲尔德神经网络(MHNN)系统。通过动力学方法,分析了所构建神经网络的多维多卷吸引子和初始偏移提升行为。观察到的初始偏移提升行为表明该系统具有极高的多稳定性。其次,在 Raspberry Pi 平台上实现了基于 MHNN 系统的视频加密应用。该方法使用一种新颖的加密算法,通过逐帧加密对提取的视频图像的每一帧进行加密,取得了显著的加密效果,信息熵计算结果为 7.9973。这为物联网中生成的视频数据提供了强有力的保护。最后,在现场可编程门阵列(FPGA)数字硬件平台上实现了所提出的 MHNN 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT.

In Industrial Internet of Things (IIoT) production and operation processes, a substantial amount of video data is generated, often containing sensitive personal and commercial information. This paper proposed three new multiscroll Hopfield neural network (MHNN) systems by utilizing an improved segmented nonlinear non-ideal magnetic-controlled memristor model for electromagnetic radiation. Through dynamical methods, the constructed neural network's multidimensional multiscroll attractors and initial offset boosting behavior are analyzed. The observed initial offset boosting behavior demonstrates the system has extreme multistability. Secondly, a video encryption application based on the MHNN system is implemented on the Raspberry Pi platform. This approach encrypts each frame of the extracted video image using a novel encryption algorithm through frame-by-frame encryption, achieving significant encryption results with an information entropy calculation result of 7.9973. This provides strong protection for video data generated in IIoT. Finally, the proposed MHNN system is implemented on Field-Programmable Gate Array (FPGA) digital hardware platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition. Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems. Corrigendum to "Multi-view Graph Pooling with Coarsened Graph Disentanglement" [Neural Networks 174 (2024) 1-10/106221]. Multi-compartment neuron and population encoding powered spiking neural network for deep distributional reinforcement learning. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1