氟哌啶醇(一种典型的抗精神病药)抑制 NCB-20 细胞中的 5-HT3 受体电流:全细胞贴片钳研究。

IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Korean Journal of Physiology & Pharmacology Pub Date : 2024-11-22 DOI:10.4196/kjpp.24.320
Yong Soo Park, Gyu Min Kim, Ho Jun Sung, Ju Yeong Yu, Ki-Wug Sung
{"title":"氟哌啶醇(一种典型的抗精神病药)抑制 NCB-20 细胞中的 5-HT3 受体电流:全细胞贴片钳研究。","authors":"Yong Soo Park, Gyu Min Kim, Ho Jun Sung, Ju Yeong Yu, Ki-Wug Sung","doi":"10.4196/kjpp.24.320","DOIUrl":null,"url":null,"abstract":"<p><p>Haloperidol is a typical antipsychotic drug effective in alleviating positive symptoms of schizophrenia by blocking dopamine receptor 2 (DR2). However, it is also known to produce neuropsychiatric effects by acting on various targets other than DR. In this study, we investigated effect of haloperidol on function of 5-hydroxytryptamine (5-HT)<sub>3</sub> receptor, a ligand-gated ion channel belonging to the serotonin receptor family using the whole-cell voltage clamp technique and NCB20 neuroblastoma cells. When co-applied with 5-HT, haloperidol inhibited 5-HT<sub>3</sub> receptormediated currents in a concentration-dependent manner. A reduction in maximal effect (E<sub>max</sub>) and an increase in EC<sub>50</sub> observed during co-application indicated that haloperidol could act as a non-competitive antagonist of 5-HT<sub>3</sub> receptors. Haloperidol inhibited the activation of 5-HT<sub>3</sub> receptor, while also accelerating their deactivation and desensitization. The inhibitory effect of haloperidol showed no significant difference between pre- and co-application. Haloperidol did not alter the reversal potential of 5-HT<sub>3</sub> receptor currents. Furthermore, haloperidol did not affect recovery from deactivation or desensitization of 5-HT<sub>3</sub> receptors. It did not show a use-dependent inhibition either. These findings suggest that haloperidol can exert its inhibitory effect on 5-HT<sub>3</sub> receptors by allosterically preventing opening of ion channels. This mechanistic insight enhances our understanding of relationships between 5-HT<sub>3</sub> receptors and pharmacological actions of antipsychotics.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Haloperidol, a typical antipsychotic, inhibits 5-HT<sub>3</sub> receptormediated currents in NCB-20 cells: a whole-cell patch-clamp study.\",\"authors\":\"Yong Soo Park, Gyu Min Kim, Ho Jun Sung, Ju Yeong Yu, Ki-Wug Sung\",\"doi\":\"10.4196/kjpp.24.320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Haloperidol is a typical antipsychotic drug effective in alleviating positive symptoms of schizophrenia by blocking dopamine receptor 2 (DR2). However, it is also known to produce neuropsychiatric effects by acting on various targets other than DR. In this study, we investigated effect of haloperidol on function of 5-hydroxytryptamine (5-HT)<sub>3</sub> receptor, a ligand-gated ion channel belonging to the serotonin receptor family using the whole-cell voltage clamp technique and NCB20 neuroblastoma cells. When co-applied with 5-HT, haloperidol inhibited 5-HT<sub>3</sub> receptormediated currents in a concentration-dependent manner. A reduction in maximal effect (E<sub>max</sub>) and an increase in EC<sub>50</sub> observed during co-application indicated that haloperidol could act as a non-competitive antagonist of 5-HT<sub>3</sub> receptors. Haloperidol inhibited the activation of 5-HT<sub>3</sub> receptor, while also accelerating their deactivation and desensitization. The inhibitory effect of haloperidol showed no significant difference between pre- and co-application. Haloperidol did not alter the reversal potential of 5-HT<sub>3</sub> receptor currents. Furthermore, haloperidol did not affect recovery from deactivation or desensitization of 5-HT<sub>3</sub> receptors. It did not show a use-dependent inhibition either. These findings suggest that haloperidol can exert its inhibitory effect on 5-HT<sub>3</sub> receptors by allosterically preventing opening of ion channels. This mechanistic insight enhances our understanding of relationships between 5-HT<sub>3</sub> receptors and pharmacological actions of antipsychotics.</p>\",\"PeriodicalId\":54746,\"journal\":{\"name\":\"Korean Journal of Physiology & Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Physiology & Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4196/kjpp.24.320\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.320","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

氟哌啶醇是一种典型的抗精神病药物,通过阻断多巴胺受体2(DR2)来有效缓解精神分裂症的阳性症状。然而,众所周知,除了多巴胺受体2外,氟哌啶醇还能通过作用于其他靶点产生神经精神作用。在这项研究中,我们使用全细胞电压钳技术和 NCB20 神经母细胞瘤细胞研究了氟哌啶醇对 5- 羟色胺(5-HT)3 受体功能的影响,5-HT3 受体是属于血清素受体家族的配体门控离子通道。当与 5-HT 同时应用时,氟哌啶醇以浓度依赖的方式抑制 5-HT3 受体调节的电流。联合应用时观察到的最大效应(Emax)降低和EC50增加表明氟哌啶醇可以作为5-HT3受体的非竞争性拮抗剂。氟哌啶醇在抑制 5-HT3 受体激活的同时,还能加速其失活和脱敏。氟哌啶醇的抑制作用在使用前和同时使用时没有显著差异。氟哌啶醇不会改变 5-HT3 受体电流的逆转电位。此外,氟哌啶醇不影响 5-HT3 受体失活或脱敏后的恢复。它也没有表现出依赖使用的抑制作用。这些研究结果表明,氟哌啶醇可以通过异位作用阻止离子通道的开放,从而对 5-HT3 受体产生抑制作用。这一机理认识加深了我们对 5-HT3 受体与抗精神病药药理作用之间关系的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptormediated currents in NCB-20 cells: a whole-cell patch-clamp study.

Haloperidol is a typical antipsychotic drug effective in alleviating positive symptoms of schizophrenia by blocking dopamine receptor 2 (DR2). However, it is also known to produce neuropsychiatric effects by acting on various targets other than DR. In this study, we investigated effect of haloperidol on function of 5-hydroxytryptamine (5-HT)3 receptor, a ligand-gated ion channel belonging to the serotonin receptor family using the whole-cell voltage clamp technique and NCB20 neuroblastoma cells. When co-applied with 5-HT, haloperidol inhibited 5-HT3 receptormediated currents in a concentration-dependent manner. A reduction in maximal effect (Emax) and an increase in EC50 observed during co-application indicated that haloperidol could act as a non-competitive antagonist of 5-HT3 receptors. Haloperidol inhibited the activation of 5-HT3 receptor, while also accelerating their deactivation and desensitization. The inhibitory effect of haloperidol showed no significant difference between pre- and co-application. Haloperidol did not alter the reversal potential of 5-HT3 receptor currents. Furthermore, haloperidol did not affect recovery from deactivation or desensitization of 5-HT3 receptors. It did not show a use-dependent inhibition either. These findings suggest that haloperidol can exert its inhibitory effect on 5-HT3 receptors by allosterically preventing opening of ion channels. This mechanistic insight enhances our understanding of relationships between 5-HT3 receptors and pharmacological actions of antipsychotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Physiology & Pharmacology
Korean Journal of Physiology & Pharmacology PHARMACOLOGY & PHARMACY-PHYSIOLOGY
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
6-12 weeks
期刊介绍: The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.
期刊最新文献
Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis. Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptormediated currents in NCB-20 cells: a whole-cell patch-clamp study. Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response. Anti-inflammatory effects of LCB 03-0110 on human corneal epithelial and murine T helper 17 cells. Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1