Sónia Rocha, Beatriz Vicente, Carina Proença, Vera L. M. Silva, Artur M. S. Silva, M. Luísa Corvo, Eduarda Fernandes, Marisa Freitas
{"title":"在一系列色酮类衍生物和吡唑类化合物中,草木犀抑制人类果糖 1,6-二磷酸酶,对胰岛素耐药的 HepG2 细胞有积极作用。","authors":"Sónia Rocha, Beatriz Vicente, Carina Proença, Vera L. M. Silva, Artur M. S. Silva, M. Luísa Corvo, Eduarda Fernandes, Marisa Freitas","doi":"10.1111/cbdd.70017","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In patients with type 2 diabetes <i>mellitus</i> (DM), excessive gluconeogenesis is considered a major contributor to hyperglycemia. Therefore, targeting fructose 1,6-bisphosphatase (FBPase), a key regulatory enzyme involved in gluconeogenesis, has gained interest as a potential therapeutic target for managing DM. In this study, a library of 42 structurally-related chromone derivatives (including flavonoids, 2-styrylchromones, and 2-(4-arylbuta-1,3-dien-1-yl)chromones, named as 2-styrylchromone-related derivatives), as well as 4- and 5-styrylpyrazoles, were tested against human FBPase using a noncellular microanalysis screening system. Herbacetin, 3,4′,5,7,8-pentahydroxyflavone, inhibited FBPase activity with an IC<sub>50</sub> value of 6.4 ± 0.7 μM. The effects of herbacetin were also explored using an insulin-resistant human hepatocellular carcinoma cell line (HepG2 cells). The results showed that herbacetin significantly decrease insulin resistance by promoting the phosphorylation of protein kinase B (Akt), and exhibited a capacity to ameliorate inflammation, evidenced by the modulation of the inhibitor of κB alpha (IκBα). This study provides important considerations for the design of novel FBPase inhibitors. Furthermore, it indicates a preliminary potential of herbacetin's dual action in improving insulin resistance and decreasing inflammation, suggesting the need for further investigation of this compound for addressing the complexities of type 2 DM management.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"104 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Herbacetin Inhibits Human Fructose 1,6-Bisphosphatase Among a Panel of Chromone Derivatives and Pyrazoles, Demonstrating Positive Effects on Insulin-Resistant HepG2 Cells\",\"authors\":\"Sónia Rocha, Beatriz Vicente, Carina Proença, Vera L. M. Silva, Artur M. S. Silva, M. Luísa Corvo, Eduarda Fernandes, Marisa Freitas\",\"doi\":\"10.1111/cbdd.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In patients with type 2 diabetes <i>mellitus</i> (DM), excessive gluconeogenesis is considered a major contributor to hyperglycemia. Therefore, targeting fructose 1,6-bisphosphatase (FBPase), a key regulatory enzyme involved in gluconeogenesis, has gained interest as a potential therapeutic target for managing DM. In this study, a library of 42 structurally-related chromone derivatives (including flavonoids, 2-styrylchromones, and 2-(4-arylbuta-1,3-dien-1-yl)chromones, named as 2-styrylchromone-related derivatives), as well as 4- and 5-styrylpyrazoles, were tested against human FBPase using a noncellular microanalysis screening system. Herbacetin, 3,4′,5,7,8-pentahydroxyflavone, inhibited FBPase activity with an IC<sub>50</sub> value of 6.4 ± 0.7 μM. The effects of herbacetin were also explored using an insulin-resistant human hepatocellular carcinoma cell line (HepG2 cells). The results showed that herbacetin significantly decrease insulin resistance by promoting the phosphorylation of protein kinase B (Akt), and exhibited a capacity to ameliorate inflammation, evidenced by the modulation of the inhibitor of κB alpha (IκBα). This study provides important considerations for the design of novel FBPase inhibitors. Furthermore, it indicates a preliminary potential of herbacetin's dual action in improving insulin resistance and decreasing inflammation, suggesting the need for further investigation of this compound for addressing the complexities of type 2 DM management.</p>\\n </div>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"104 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70017\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Herbacetin Inhibits Human Fructose 1,6-Bisphosphatase Among a Panel of Chromone Derivatives and Pyrazoles, Demonstrating Positive Effects on Insulin-Resistant HepG2 Cells
In patients with type 2 diabetes mellitus (DM), excessive gluconeogenesis is considered a major contributor to hyperglycemia. Therefore, targeting fructose 1,6-bisphosphatase (FBPase), a key regulatory enzyme involved in gluconeogenesis, has gained interest as a potential therapeutic target for managing DM. In this study, a library of 42 structurally-related chromone derivatives (including flavonoids, 2-styrylchromones, and 2-(4-arylbuta-1,3-dien-1-yl)chromones, named as 2-styrylchromone-related derivatives), as well as 4- and 5-styrylpyrazoles, were tested against human FBPase using a noncellular microanalysis screening system. Herbacetin, 3,4′,5,7,8-pentahydroxyflavone, inhibited FBPase activity with an IC50 value of 6.4 ± 0.7 μM. The effects of herbacetin were also explored using an insulin-resistant human hepatocellular carcinoma cell line (HepG2 cells). The results showed that herbacetin significantly decrease insulin resistance by promoting the phosphorylation of protein kinase B (Akt), and exhibited a capacity to ameliorate inflammation, evidenced by the modulation of the inhibitor of κB alpha (IκBα). This study provides important considerations for the design of novel FBPase inhibitors. Furthermore, it indicates a preliminary potential of herbacetin's dual action in improving insulin resistance and decreasing inflammation, suggesting the need for further investigation of this compound for addressing the complexities of type 2 DM management.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.