{"title":"用于生物组织修复的连续电纺聚(ɛ-己内酯)丝的特性和建模。","authors":"Thales Zanetti Ferreira , Zhouzhou Pan , Pierre-Alexis Mouthuy , Laurence Brassart","doi":"10.1016/j.jmbbm.2024.106810","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the mechanical behaviour of poly(<span><math><mi>ɛ</mi></math></span>-caprolactone) (PCL) continuous filaments produced by a novel electrospinning (ES) method. These filaments can be processed into woven or braided structures, showing great promises as scaffolds for ligament and tendon repair. Mechanical characterisation of the filaments using DMA and uniaxial tensile tests shows that the filament response is viscoelastic–viscoplastic. Filaments tested using bollard grips present an initially linear elastic response, followed by plastic yielding with two-stage hardening. The filaments are highly stretchable, reaching more than 1000% strain. The different deformation stages are correlated to the evolution of the micro-fibre network observed using SEM, involving the untangling, alignment and stretching of the fibres. A large deformation viscoelastic–viscoplastic model is proposed, which successfully captures the mechanical response of the filaments under non-monotonic loading conditions. Our study also highlights the sensitivity of the measured mechanical response to the type of mechanical grips, namely bollard or screw-side grips.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"161 ","pages":"Article 106810"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair\",\"authors\":\"Thales Zanetti Ferreira , Zhouzhou Pan , Pierre-Alexis Mouthuy , Laurence Brassart\",\"doi\":\"10.1016/j.jmbbm.2024.106810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the mechanical behaviour of poly(<span><math><mi>ɛ</mi></math></span>-caprolactone) (PCL) continuous filaments produced by a novel electrospinning (ES) method. These filaments can be processed into woven or braided structures, showing great promises as scaffolds for ligament and tendon repair. Mechanical characterisation of the filaments using DMA and uniaxial tensile tests shows that the filament response is viscoelastic–viscoplastic. Filaments tested using bollard grips present an initially linear elastic response, followed by plastic yielding with two-stage hardening. The filaments are highly stretchable, reaching more than 1000% strain. The different deformation stages are correlated to the evolution of the micro-fibre network observed using SEM, involving the untangling, alignment and stretching of the fibres. A large deformation viscoelastic–viscoplastic model is proposed, which successfully captures the mechanical response of the filaments under non-monotonic loading conditions. Our study also highlights the sensitivity of the measured mechanical response to the type of mechanical grips, namely bollard or screw-side grips.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"161 \",\"pages\":\"Article 106810\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124004429\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004429","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair
This study investigates the mechanical behaviour of poly(-caprolactone) (PCL) continuous filaments produced by a novel electrospinning (ES) method. These filaments can be processed into woven or braided structures, showing great promises as scaffolds for ligament and tendon repair. Mechanical characterisation of the filaments using DMA and uniaxial tensile tests shows that the filament response is viscoelastic–viscoplastic. Filaments tested using bollard grips present an initially linear elastic response, followed by plastic yielding with two-stage hardening. The filaments are highly stretchable, reaching more than 1000% strain. The different deformation stages are correlated to the evolution of the micro-fibre network observed using SEM, involving the untangling, alignment and stretching of the fibres. A large deformation viscoelastic–viscoplastic model is proposed, which successfully captures the mechanical response of the filaments under non-monotonic loading conditions. Our study also highlights the sensitivity of the measured mechanical response to the type of mechanical grips, namely bollard or screw-side grips.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.