开发用于晚期乳腺癌管理的人工智能平台。

Thomas Alassane Ouattara, Seydou Golo Barro, Pascal Staccini
{"title":"开发用于晚期乳腺癌管理的人工智能平台。","authors":"Thomas Alassane Ouattara, Seydou Golo Barro, Pascal Staccini","doi":"10.3233/SHTI241095","DOIUrl":null,"url":null,"abstract":"<p><p>This article explores the transition from a traditional histopathological examination system to an innovative platform using artificial intelligence (AI) for breast cancer detection from histopathological images in Burkina Faso. The existing system is analyzed in detail, highlighting the steps of querying, sample preparation, analysis by the pathologist, and validation by the physician. From this analysis, the needs and challenges are identified, emphasizing the opportunities for AI to improve the efficiency and accuracy of the diagnosis. The design of the AI platform is then presented, including data collection, AI model development, and its integration into existing processes. Finally, the expected results and implications for improving healthcare in Burkina Faso are discussed, highlighting the potential benefits and challenges to overcome for the successful adoption of this promising technology.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"321 ","pages":"215-219"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an AI Platform for Advanced Breast Cancer Management.\",\"authors\":\"Thomas Alassane Ouattara, Seydou Golo Barro, Pascal Staccini\",\"doi\":\"10.3233/SHTI241095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article explores the transition from a traditional histopathological examination system to an innovative platform using artificial intelligence (AI) for breast cancer detection from histopathological images in Burkina Faso. The existing system is analyzed in detail, highlighting the steps of querying, sample preparation, analysis by the pathologist, and validation by the physician. From this analysis, the needs and challenges are identified, emphasizing the opportunities for AI to improve the efficiency and accuracy of the diagnosis. The design of the AI platform is then presented, including data collection, AI model development, and its integration into existing processes. Finally, the expected results and implications for improving healthcare in Burkina Faso are discussed, highlighting the potential benefits and challenges to overcome for the successful adoption of this promising technology.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"321 \",\"pages\":\"215-219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI241095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI241095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了布基纳法索从传统的组织病理学检查系统过渡到使用人工智能(AI)从组织病理学图像检测乳腺癌的创新平台的过程。文章详细分析了现有系统,重点介绍了查询、样本准备、病理学家分析和医生验证等步骤。通过分析,确定了需求和挑战,强调了人工智能提高诊断效率和准确性的机会。然后介绍了人工智能平台的设计,包括数据收集、人工智能模型开发及其与现有流程的整合。最后,讨论了预期成果和对改善布基纳法索医疗保健的影响,强调了成功采用这一前景广阔的技术的潜在好处和需要克服的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an AI Platform for Advanced Breast Cancer Management.

This article explores the transition from a traditional histopathological examination system to an innovative platform using artificial intelligence (AI) for breast cancer detection from histopathological images in Burkina Faso. The existing system is analyzed in detail, highlighting the steps of querying, sample preparation, analysis by the pathologist, and validation by the physician. From this analysis, the needs and challenges are identified, emphasizing the opportunities for AI to improve the efficiency and accuracy of the diagnosis. The design of the AI platform is then presented, including data collection, AI model development, and its integration into existing processes. Finally, the expected results and implications for improving healthcare in Burkina Faso are discussed, highlighting the potential benefits and challenges to overcome for the successful adoption of this promising technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROSurvival: A Technical Case Report on Creating and Publishing a Dataset for Federated Learning on Survival Prediction of Prostate Cancer Patients. Survival Stacking Ensemble Model for Lung Cancer Risk Prediction. The Creation of Intensional Medication Lists Using the NHS Dictionary of Medicines and Devices. Scaling up Environmental Governance in Precision Forestry. Securing a Generative AI-Powered Healthcare Chatbot.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1