生成三维心脏形状模型,用于样本内试验。

Andrei Gasparovici, Alex Serban
{"title":"生成三维心脏形状模型,用于样本内试验。","authors":"Andrei Gasparovici, Alex Serban","doi":"10.3233/SHTI241090","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a deep learning method to model and generate synthetic aortic shapes based on representing shapes as the zero-level set of a neural signed distance field, conditioned by a family of trainable embedding vectors with encode the geometric features of each shape. The network is trained on a dataset of aortic root meshes reconstructed from CT images by making the neural field vanish on sampled surface points and enforcing its spatial gradient to have unit norm. Empirical results show that our model can represent aortic shapes with high fidelity. Moreover, by sampling from the learned embedding vectors, we can generate novel shapes that resemble real patient anatomies, which can be used for in-silico trials.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"321 ","pages":"190-194"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative 3D Cardiac Shape Modelling for in-silico Trials.\",\"authors\":\"Andrei Gasparovici, Alex Serban\",\"doi\":\"10.3233/SHTI241090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a deep learning method to model and generate synthetic aortic shapes based on representing shapes as the zero-level set of a neural signed distance field, conditioned by a family of trainable embedding vectors with encode the geometric features of each shape. The network is trained on a dataset of aortic root meshes reconstructed from CT images by making the neural field vanish on sampled surface points and enforcing its spatial gradient to have unit norm. Empirical results show that our model can represent aortic shapes with high fidelity. Moreover, by sampling from the learned embedding vectors, we can generate novel shapes that resemble real patient anatomies, which can be used for in-silico trials.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"321 \",\"pages\":\"190-194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI241090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI241090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种深度学习方法,基于将形状表示为神经符号距离场的零级集,并以编码每个形状几何特征的可训练嵌入向量族为条件,来建模和生成合成主动脉形状。通过使神经场在采样表面点上消失,并强制其空间梯度具有单位法线,在 CT 图像重建的主动脉根网格数据集上对网络进行了训练。经验结果表明,我们的模型能高保真地表示主动脉形状。此外,通过从学习到的嵌入向量中采样,我们还能生成与真实患者解剖结构相似的新形状,可用于体内试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative 3D Cardiac Shape Modelling for in-silico Trials.

We propose a deep learning method to model and generate synthetic aortic shapes based on representing shapes as the zero-level set of a neural signed distance field, conditioned by a family of trainable embedding vectors with encode the geometric features of each shape. The network is trained on a dataset of aortic root meshes reconstructed from CT images by making the neural field vanish on sampled surface points and enforcing its spatial gradient to have unit norm. Empirical results show that our model can represent aortic shapes with high fidelity. Moreover, by sampling from the learned embedding vectors, we can generate novel shapes that resemble real patient anatomies, which can be used for in-silico trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROSurvival: A Technical Case Report on Creating and Publishing a Dataset for Federated Learning on Survival Prediction of Prostate Cancer Patients. Survival Stacking Ensemble Model for Lung Cancer Risk Prediction. The Creation of Intensional Medication Lists Using the NHS Dictionary of Medicines and Devices. Scaling up Environmental Governance in Precision Forestry. Securing a Generative AI-Powered Healthcare Chatbot.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1