miRStart 2.0:通过基于深度学习的 TSS 识别提高 miRNA 调控洞察力

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2024-11-23 DOI:10.1093/nar/gkae1086
Jiatong Xu, Jingting Wan, Hsi-Yuan Huang, Yigang Chen, Yixian Huang, Junyang Huang, Ziyue Zhang, Chang Su, Yuming Zhou, Xingqiao Lin, Yang-Chi-Dung Lin, Hsien-Da Huang
{"title":"miRStart 2.0:通过基于深度学习的 TSS 识别提高 miRNA 调控洞察力","authors":"Jiatong Xu, Jingting Wan, Hsi-Yuan Huang, Yigang Chen, Yixian Huang, Junyang Huang, Ziyue Zhang, Chang Su, Yuming Zhou, Xingqiao Lin, Yang-Chi-Dung Lin, Hsien-Da Huang","doi":"10.1093/nar/gkae1086","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3′-untranslated regions of target mRNAs, influencing various biological processes at the post-transcriptional level. Identifying miRNA transcription start sites (TSSs) and transcription factors’ (TFs) regulatory roles is crucial for elucidating miRNA function and transcriptional regulation. miRStart 2.0 integrates over 4500 high-throughput datasets across five data types, utilizing a multi-modal approach to annotate 28 828 putative TSSs for 1745 human and 1181 mouse miRNAs, supported by sequencing-based signals. Over 6 million tissue-specific TF–miRNA interactions, integrated from ChIP-seq data, are supplemented by DNase hypersensitivity and UCSC conservation data, with network visualizations. Our deep learning-based model outperforms existing tools in miRNA TSS prediction, achieving the most overlaps with both cell-specific and non-cell-specific validated TSSs. The user-friendly web interface and visualization tools make miRStart 2.0 easily accessible to researchers, enabling efficient identification of miRNA upstream regulatory elements in relation to their TSSs. This updated database provides systems-level insights into gene regulation and disease mechanisms, offering a valuable resource for translational research, facilitating the discovery of novel therapeutic targets and precision medicine strategies. miRStart 2.0 is now accessible at https://awi.cuhk.edu.cn/∼miRStart2.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"20 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miRStart 2.0: enhancing miRNA regulatory insights through deep learning-based TSS identification\",\"authors\":\"Jiatong Xu, Jingting Wan, Hsi-Yuan Huang, Yigang Chen, Yixian Huang, Junyang Huang, Ziyue Zhang, Chang Su, Yuming Zhou, Xingqiao Lin, Yang-Chi-Dung Lin, Hsien-Da Huang\",\"doi\":\"10.1093/nar/gkae1086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3′-untranslated regions of target mRNAs, influencing various biological processes at the post-transcriptional level. Identifying miRNA transcription start sites (TSSs) and transcription factors’ (TFs) regulatory roles is crucial for elucidating miRNA function and transcriptional regulation. miRStart 2.0 integrates over 4500 high-throughput datasets across five data types, utilizing a multi-modal approach to annotate 28 828 putative TSSs for 1745 human and 1181 mouse miRNAs, supported by sequencing-based signals. Over 6 million tissue-specific TF–miRNA interactions, integrated from ChIP-seq data, are supplemented by DNase hypersensitivity and UCSC conservation data, with network visualizations. Our deep learning-based model outperforms existing tools in miRNA TSS prediction, achieving the most overlaps with both cell-specific and non-cell-specific validated TSSs. The user-friendly web interface and visualization tools make miRStart 2.0 easily accessible to researchers, enabling efficient identification of miRNA upstream regulatory elements in relation to their TSSs. This updated database provides systems-level insights into gene regulation and disease mechanisms, offering a valuable resource for translational research, facilitating the discovery of novel therapeutic targets and precision medicine strategies. miRStart 2.0 is now accessible at https://awi.cuhk.edu.cn/∼miRStart2.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1086\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1086","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微RNA(miRNA)是一种小型非编码RNA,通过与目标mRNA的3′-非翻译区结合来调控基因表达,在转录后水平影响各种生物过程。鉴定 miRNA 的转录起始位点(TSSs)和转录因子(TFs)的调控作用对于阐明 miRNA 的功能和转录调控至关重要。miRStart 2.0 整合了五种数据类型的 4500 多个高通量数据集,利用多模式方法为 1745 个人类 miRNA 和 1181 个小鼠 miRNA 注释了 28 828 个推测的 TSSs,并提供了基于测序的信号支持。从 ChIP-seq 数据中整合的 600 多万个组织特异性 TF-miRNA 相互作用得到了 DNase 超敏反应和 UCSC 保护数据的补充,并实现了网络可视化。我们基于深度学习的模型在 miRNA TSS 预测方面优于现有工具,与细胞特异性和非细胞特异性验证的 TSS 重叠最多。用户友好的网络界面和可视化工具使研究人员可以轻松访问 miRStart 2.0,从而高效地识别 miRNA 上游调控元件与其 TSS 的关系。这个更新的数据库提供了对基因调控和疾病机制的系统级洞察,为转化研究提供了宝贵的资源,有助于发现新的治疗靶点和精准医疗策略。miRStart 2.0 现可通过 https://awi.cuhk.edu.cn/∼miRStart2 访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miRStart 2.0: enhancing miRNA regulatory insights through deep learning-based TSS identification
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3′-untranslated regions of target mRNAs, influencing various biological processes at the post-transcriptional level. Identifying miRNA transcription start sites (TSSs) and transcription factors’ (TFs) regulatory roles is crucial for elucidating miRNA function and transcriptional regulation. miRStart 2.0 integrates over 4500 high-throughput datasets across five data types, utilizing a multi-modal approach to annotate 28 828 putative TSSs for 1745 human and 1181 mouse miRNAs, supported by sequencing-based signals. Over 6 million tissue-specific TF–miRNA interactions, integrated from ChIP-seq data, are supplemented by DNase hypersensitivity and UCSC conservation data, with network visualizations. Our deep learning-based model outperforms existing tools in miRNA TSS prediction, achieving the most overlaps with both cell-specific and non-cell-specific validated TSSs. The user-friendly web interface and visualization tools make miRStart 2.0 easily accessible to researchers, enabling efficient identification of miRNA upstream regulatory elements in relation to their TSSs. This updated database provides systems-level insights into gene regulation and disease mechanisms, offering a valuable resource for translational research, facilitating the discovery of novel therapeutic targets and precision medicine strategies. miRStart 2.0 is now accessible at https://awi.cuhk.edu.cn/∼miRStart2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Molecular basis of the phosphorothioation-sensing antiphage defense system IscS-DndBCDE-DndI. Control of iron acquisition by multiple small RNAs unravels a new role for transcriptional terminator loops in gene regulation. Chromatin and transcription in Nucleic Acids Research: the first 50 years. DNA sequence and lesion-dependent mitochondrial transcription factor A (TFAM)-DNA-binding modulates DNA repair activities and products. EMBL's European Bioinformatics Institute (EMBL-EBI) in 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1