具有高转移数和锂离子快速传导能力的超交联金属有机多面体电解质

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-23 DOI:10.1002/anie.202414211
Jinjin Liu, Runhao Zhang, Xintai Xie, Juan Wang, Fazheng Jin, Zhifang Wang, Tonghai Wang, Peng Cheng, Jianhao Lu, Zhenjie Zhang
{"title":"具有高转移数和锂离子快速传导能力的超交联金属有机多面体电解质","authors":"Jinjin Liu, Runhao Zhang, Xintai Xie, Juan Wang, Fazheng Jin, Zhifang Wang, Tonghai Wang, Peng Cheng, Jianhao Lu, Zhenjie Zhang","doi":"10.1002/anie.202414211","DOIUrl":null,"url":null,"abstract":"Solid‐state electrolytes (SSEs) with high Li‐ion transference numbers and fast ionic conductivity are urgently needed for technological innovations in lithium‐metal batteries. To promote the dissociation of ion pairs and overcome the mechanical brittleness and interface defects caused by traditional fillers in polymeric electrolytes, we designed and fabricated a cationic hypercrosslinking metal‐organic polyhedra (HCMOPs) polymer as SSE. Benefiting a three‐component synergistic effect: cationic MOPs, branched polyethyleneimine macromonomer and polyelectrolyte units, the Li‐HCMOP electrolyte possesses a high Li‐ion conductivity, a high Li‐ion transference number and a low activation energy. Their LiFePO4/Li batteries exhibit high capacity with superior rate performance and cycling stability. Moreover, soluble MOPs serve as high crosslinking nodes to provide excellent mechanical strength for electrolytes and good compatibility with polymers. This work highlights an effective idea of high‐performance MOP‐based solid‐state electrolytes applied in LMBs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"46 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypercrosslinked Metal‐Organic Polyhedra Electrolyte with High Transference Number and Fast Conduction of Li Ions\",\"authors\":\"Jinjin Liu, Runhao Zhang, Xintai Xie, Juan Wang, Fazheng Jin, Zhifang Wang, Tonghai Wang, Peng Cheng, Jianhao Lu, Zhenjie Zhang\",\"doi\":\"10.1002/anie.202414211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid‐state electrolytes (SSEs) with high Li‐ion transference numbers and fast ionic conductivity are urgently needed for technological innovations in lithium‐metal batteries. To promote the dissociation of ion pairs and overcome the mechanical brittleness and interface defects caused by traditional fillers in polymeric electrolytes, we designed and fabricated a cationic hypercrosslinking metal‐organic polyhedra (HCMOPs) polymer as SSE. Benefiting a three‐component synergistic effect: cationic MOPs, branched polyethyleneimine macromonomer and polyelectrolyte units, the Li‐HCMOP electrolyte possesses a high Li‐ion conductivity, a high Li‐ion transference number and a low activation energy. Their LiFePO4/Li batteries exhibit high capacity with superior rate performance and cycling stability. Moreover, soluble MOPs serve as high crosslinking nodes to provide excellent mechanical strength for electrolytes and good compatibility with polymers. This work highlights an effective idea of high‐performance MOP‐based solid‐state electrolytes applied in LMBs.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202414211\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414211","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池的技术创新迫切需要具有高锂离子转移率和快速离子传导性的固态电解质(SSE)。为了促进离子对的解离,克服传统聚合物电解质填料造成的机械脆性和界面缺陷,我们设计并制备了阳离子超交联金属有机多面体(HCMOPs)聚合物作为固态电解质。由于阳离子 MOPs、支化聚乙烯亚胺大单体和聚电解质单元三者的协同作用,锂-HCMOP 电解质具有高锂离子电导率、高锂离子转移数和低活化能。它们生产的 LiFePO4/Li 电池具有高容量、卓越的速率性能和循环稳定性。此外,可溶性澳门银河娱乐场网址可作为高交联节点,为电解质提供出色的机械强度,并与聚合物具有良好的兼容性。这项工作突出了将高性能澳门威尼斯人官网基固态电解质应用于 LMB 的有效思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hypercrosslinked Metal‐Organic Polyhedra Electrolyte with High Transference Number and Fast Conduction of Li Ions
Solid‐state electrolytes (SSEs) with high Li‐ion transference numbers and fast ionic conductivity are urgently needed for technological innovations in lithium‐metal batteries. To promote the dissociation of ion pairs and overcome the mechanical brittleness and interface defects caused by traditional fillers in polymeric electrolytes, we designed and fabricated a cationic hypercrosslinking metal‐organic polyhedra (HCMOPs) polymer as SSE. Benefiting a three‐component synergistic effect: cationic MOPs, branched polyethyleneimine macromonomer and polyelectrolyte units, the Li‐HCMOP electrolyte possesses a high Li‐ion conductivity, a high Li‐ion transference number and a low activation energy. Their LiFePO4/Li batteries exhibit high capacity with superior rate performance and cycling stability. Moreover, soluble MOPs serve as high crosslinking nodes to provide excellent mechanical strength for electrolytes and good compatibility with polymers. This work highlights an effective idea of high‐performance MOP‐based solid‐state electrolytes applied in LMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Total Synthesis of (–)‐Cordycicadin D and 3,4‐trans‐Cordycicadins A and B: Entry to the 3,4‐trans‐Fused Cordycicadin Framework Inside Back Cover: Interface‐Triggered Spin‐Magnetic Effect in Rare Earth Intra‐particle Heterostructured Nanoalloys for Boosting Hydrogen Evolution Benzylic C(sp3)–H Phosphonylation via Dual Photo and Copper Catalysis Hypercrosslinked Metal‐Organic Polyhedra Electrolyte with High Transference Number and Fast Conduction of Li Ions O─O Radical Coupling in Ultrathin Reconstructed Co6.8Se8 Nanosheets for Effective Oxygen Evolution and Zinc-Air Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1