氧化应激诱导的神经退行性病变中的核孔和核胞质转运损伤:与帕金森病和其他相关神经退行性疾病发病机制的分子机制有关

IF 14.9 1区 医学 Q1 NEUROSCIENCES Molecular Neurodegeneration Pub Date : 2024-11-23 DOI:10.1186/s13024-024-00774-0
Zainab Riaz, Gabriel S. Richardson, Huajun Jin, Gary Zenitsky, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy
{"title":"氧化应激诱导的神经退行性病变中的核孔和核胞质转运损伤:与帕金森病和其他相关神经退行性疾病发病机制的分子机制有关","authors":"Zainab Riaz, Gabriel S. Richardson, Huajun Jin, Gary Zenitsky, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy","doi":"10.1186/s13024-024-00774-0","DOIUrl":null,"url":null,"abstract":"Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson’s disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"24 1","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson’s and other related neurodegenerative diseases\",\"authors\":\"Zainab Riaz, Gabriel S. Richardson, Huajun Jin, Gary Zenitsky, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy\",\"doi\":\"10.1186/s13024-024-00774-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson’s disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.\",\"PeriodicalId\":18800,\"journal\":{\"name\":\"Molecular Neurodegeneration\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13024-024-00774-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-024-00774-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

核孔复合体(NPC)嵌入核膜,促进真核细胞中细胞核与细胞质之间大分子的交换。NPC 和核转运功能障碍在衰老和各种神经退行性疾病的发病机制中起着重要作用。包括帕金森病(PD)在内的这些神经退行性疾病的共同特征包括线粒体功能障碍、氧化应激和特定脑区不溶性蛋白聚集体的积累。多巴胺能神经元易受线粒体压力的影响,这凸显了线粒体在帕金森病进展过程中的关键作用。在帕金森病中,衰老和α-突触核蛋白诱导的氧化应激加剧了线粒体-核交流的中断。线粒体损伤诱发帕金森病神经退行性变的确切机制尚不清楚。有证据表明,多巴胺能神经核的紊乱与帕金森病相关的神经变性有关。这些扰动涉及核包膜的结构性损伤和关键转录因子的错误定位,可能是由氧化应激或α-突触核蛋白病理学驱动的。蛋白聚集体、致病突变和持续氧化应激的存在会加剧 NPCs 的功能障碍,但这一机制在氧化应激诱导的帕金森病中仍未得到充分研究。本综述总结了线粒体功能障碍与多巴胺能神经退行性变之间的联系,并概述了目前在帕金森病中核包膜和核转运异常的证据,尤其是在氧化应激中。我们强调了核孔和核胞质转运功能障碍在帕金森病中的潜在作用,并强调了系统研究帕金森病中核包膜和核转运成分的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson’s and other related neurodegenerative diseases
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson’s disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurodegeneration
Molecular Neurodegeneration 医学-神经科学
CiteScore
23.00
自引率
4.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels. Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.
期刊最新文献
Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson’s and other related neurodegenerative diseases Regulation of disease-associated microglia in the optic nerve by lipoxin B4 and ocular hypertension Stearoyl-CoA desaturase-1: a potential therapeutic target for neurological disorders Are oligodendrocytes the missing link in Alzheimer's disease and related dementia research? Contribution of amyloid deposition from oligodendrocytes in a mouse model of Alzheimer’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1