Irena Audzeyenka, Agnieszka Piwkowska, Dorota Rogacka, Mariusz Makowski, Mateusz Kowalik
{"title":"双吡啶磺酰胺铑(III)复合物的生物学评价:对乳腺癌细胞线粒体动力学和细胞骨架重塑的影响","authors":"Irena Audzeyenka, Agnieszka Piwkowska, Dorota Rogacka, Mariusz Makowski, Mateusz Kowalik","doi":"10.1021/acs.jmedchem.4c02284","DOIUrl":null,"url":null,"abstract":"Rhodium(III) complexes have gained attention for their anticancer potential. In this study, we investigated a rhodium(III) bipyridylsulfonamide complex (<b>2</b>) and its ligand (<b>L</b>) for their effects on breast cancer (SKBr3) and noncancerous mammary cells (HB2). Both compounds significantly reduced oxidative phosphorylation (OXPHOS) and mitochondrial function in SKBr3 cells while sparing HB2 cells. Compound <b>2</b> also increased glycolysis in both lines, suggesting a metabolic shift. Mitochondrial size and shape were altered, particularly in SKBr3 cells. Additionally, both compounds reduced cancer cell migration by disrupting actin cytoskeleton organization and the Rac1/VASP signaling pathway. These findings suggest that the rhodium(III) bipyridylsulfonamide complex selectively impairs mitochondrial dynamics and cell migration in cancer cells while sparing healthy cells, providing insight into its mechanism of action and toward its use as targeted anticancer therapy. This study lays the groundwork for future in vivo studies and further optimization of these metal-based therapeutics for clinical applications.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"6 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological Evaluation of a Rhodium(III) Bipyridylsulfonamide Complex: Effects on Mitochondrial Dynamics and Cytoskeletal Remodeling in Breast Cancer Cells\",\"authors\":\"Irena Audzeyenka, Agnieszka Piwkowska, Dorota Rogacka, Mariusz Makowski, Mateusz Kowalik\",\"doi\":\"10.1021/acs.jmedchem.4c02284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rhodium(III) complexes have gained attention for their anticancer potential. In this study, we investigated a rhodium(III) bipyridylsulfonamide complex (<b>2</b>) and its ligand (<b>L</b>) for their effects on breast cancer (SKBr3) and noncancerous mammary cells (HB2). Both compounds significantly reduced oxidative phosphorylation (OXPHOS) and mitochondrial function in SKBr3 cells while sparing HB2 cells. Compound <b>2</b> also increased glycolysis in both lines, suggesting a metabolic shift. Mitochondrial size and shape were altered, particularly in SKBr3 cells. Additionally, both compounds reduced cancer cell migration by disrupting actin cytoskeleton organization and the Rac1/VASP signaling pathway. These findings suggest that the rhodium(III) bipyridylsulfonamide complex selectively impairs mitochondrial dynamics and cell migration in cancer cells while sparing healthy cells, providing insight into its mechanism of action and toward its use as targeted anticancer therapy. This study lays the groundwork for future in vivo studies and further optimization of these metal-based therapeutics for clinical applications.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c02284\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02284","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Biological Evaluation of a Rhodium(III) Bipyridylsulfonamide Complex: Effects on Mitochondrial Dynamics and Cytoskeletal Remodeling in Breast Cancer Cells
Rhodium(III) complexes have gained attention for their anticancer potential. In this study, we investigated a rhodium(III) bipyridylsulfonamide complex (2) and its ligand (L) for their effects on breast cancer (SKBr3) and noncancerous mammary cells (HB2). Both compounds significantly reduced oxidative phosphorylation (OXPHOS) and mitochondrial function in SKBr3 cells while sparing HB2 cells. Compound 2 also increased glycolysis in both lines, suggesting a metabolic shift. Mitochondrial size and shape were altered, particularly in SKBr3 cells. Additionally, both compounds reduced cancer cell migration by disrupting actin cytoskeleton organization and the Rac1/VASP signaling pathway. These findings suggest that the rhodium(III) bipyridylsulfonamide complex selectively impairs mitochondrial dynamics and cell migration in cancer cells while sparing healthy cells, providing insight into its mechanism of action and toward its use as targeted anticancer therapy. This study lays the groundwork for future in vivo studies and further optimization of these metal-based therapeutics for clinical applications.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.