{"title":"通过增强阴极相骨架的阻挡效应提高高钙质耐热镁合金的耐电化学腐蚀性能","authors":"Yuchao Jin, Lixi Tian, Zhou Huang, Fang Wang","doi":"10.1016/j.jallcom.2024.177728","DOIUrl":null,"url":null,"abstract":"Mg-Al-Ca-based alloys are highly susceptible to electrochemical corrosion due to the micro-galvanic corrosion induced by the large potential gap between the cathodic second phase and the anodic α-Mg matrix. This study reports a new strategy of improving their corrosion resistance by enhancing the barrier effect of the cathodic phase skeleton based on a Mg-5Al-3Ca-xZn alloy. The results indicate that the supersaturation of Zn in the C36-(Mg,Al)<sub>2</sub>Ca phase skeleton, combined with the further formation of Ca<sub>2</sub>Mg<sub>6</sub>Zn<sub>3</sub> through a peritectic reaction, significantly increases the potential difference between the second-phase skeleton and the matrix, however, the corrosion rate of the alloy in the 3.5<!-- --> <!-- -->wt.% NaCl solution anomalously decreases accordingly. It suggests that the corrosion kinetics of this alloy are governed by the barrier effect of the continuous cathode phase skeleton, outweighing the micro-galvanic effect that dominates the corrosion process for most magnesium alloys. A new understanding of the barrier effect of the cathodic phase based on the local pH variation is proposed. This study offers a new perspective for the development of high-Ca magnesium alloys that exhibit superior electrochemical corrosion resistance.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"255 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the electrochemical corrosion resistance of a high-Ca heat-resistant magnesium alloy by enhancing the barrier effect of the cathodic phase skeleton\",\"authors\":\"Yuchao Jin, Lixi Tian, Zhou Huang, Fang Wang\",\"doi\":\"10.1016/j.jallcom.2024.177728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mg-Al-Ca-based alloys are highly susceptible to electrochemical corrosion due to the micro-galvanic corrosion induced by the large potential gap between the cathodic second phase and the anodic α-Mg matrix. This study reports a new strategy of improving their corrosion resistance by enhancing the barrier effect of the cathodic phase skeleton based on a Mg-5Al-3Ca-xZn alloy. The results indicate that the supersaturation of Zn in the C36-(Mg,Al)<sub>2</sub>Ca phase skeleton, combined with the further formation of Ca<sub>2</sub>Mg<sub>6</sub>Zn<sub>3</sub> through a peritectic reaction, significantly increases the potential difference between the second-phase skeleton and the matrix, however, the corrosion rate of the alloy in the 3.5<!-- --> <!-- -->wt.% NaCl solution anomalously decreases accordingly. It suggests that the corrosion kinetics of this alloy are governed by the barrier effect of the continuous cathode phase skeleton, outweighing the micro-galvanic effect that dominates the corrosion process for most magnesium alloys. A new understanding of the barrier effect of the cathodic phase based on the local pH variation is proposed. This study offers a new perspective for the development of high-Ca magnesium alloys that exhibit superior electrochemical corrosion resistance.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"255 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.177728\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177728","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Improving the electrochemical corrosion resistance of a high-Ca heat-resistant magnesium alloy by enhancing the barrier effect of the cathodic phase skeleton
Mg-Al-Ca-based alloys are highly susceptible to electrochemical corrosion due to the micro-galvanic corrosion induced by the large potential gap between the cathodic second phase and the anodic α-Mg matrix. This study reports a new strategy of improving their corrosion resistance by enhancing the barrier effect of the cathodic phase skeleton based on a Mg-5Al-3Ca-xZn alloy. The results indicate that the supersaturation of Zn in the C36-(Mg,Al)2Ca phase skeleton, combined with the further formation of Ca2Mg6Zn3 through a peritectic reaction, significantly increases the potential difference between the second-phase skeleton and the matrix, however, the corrosion rate of the alloy in the 3.5 wt.% NaCl solution anomalously decreases accordingly. It suggests that the corrosion kinetics of this alloy are governed by the barrier effect of the continuous cathode phase skeleton, outweighing the micro-galvanic effect that dominates the corrosion process for most magnesium alloys. A new understanding of the barrier effect of the cathodic phase based on the local pH variation is proposed. This study offers a new perspective for the development of high-Ca magnesium alloys that exhibit superior electrochemical corrosion resistance.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.