K.K. Abdul Azeez, K. Veeraswamy, Prasanta K. Patro, A. Manglik, Arvind K. Gupta, Prabhakar E. Rao, D. Hanmanthu , B. Manoj Prabhakar , B.D.N. Kishore
{"title":"三维磁强成像揭示印度次大陆下K-Pg团聚地幔羽流上升的地幔导管","authors":"K.K. Abdul Azeez, K. Veeraswamy, Prasanta K. Patro, A. Manglik, Arvind K. Gupta, Prabhakar E. Rao, D. Hanmanthu , B. Manoj Prabhakar , B.D.N. Kishore","doi":"10.1016/j.tecto.2024.230558","DOIUrl":null,"url":null,"abstract":"<div><div>The central-western region of the Indian subcontinent hosts the vast geological records of its evolution from the Archean to the Recent, including the youngest (∼65 Ma) episode of the Réunion mantle plume activity that produced a large igneous province, the Deccan Volcanic Province (DVP). A three-dimensional lithospheric resistivity image of central-western India is obtained to understand the lithospheric architecture and map any major eruption channels of the Deccan volcanism as no explicit geophysical revelation of such pathways of magma ascend has yet been made. Two high conductivity (< 30 Ωm) pipe-like geometric features originating from a common deep mantle conductive zone under the Malwa plateau (northernmost lobe of the DVP) and its proximity are detected in the resistivity model. These are interpreted to be remnants of the hitherto unknown primary lithospheric pathways of magma ascent from the deep mantle melt-rich zone related to the Reunion mantle plume upwelling under central-western India. This study gives first compelling geophysical evidence of key eruptive centers of the massive Deccan volcanism in central-western India at a locale not anticipated earlier. High to moderate conductivity crustal zones and weak to moderate lithospheric mantle resistivity in most parts of the study region represent an intense and multiphase tectono-magmatic evolution of the region spanning from the Neoproterozoic to the Cretaceous-Paleogene boundary.</div></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"894 ","pages":"Article 230558"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mantle conduits of the K-Pg Reunion mantle plume rise beneath the Indian subcontinent revealed by 3D magnetotelluric imaging\",\"authors\":\"K.K. Abdul Azeez, K. Veeraswamy, Prasanta K. Patro, A. Manglik, Arvind K. Gupta, Prabhakar E. Rao, D. Hanmanthu , B. Manoj Prabhakar , B.D.N. Kishore\",\"doi\":\"10.1016/j.tecto.2024.230558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The central-western region of the Indian subcontinent hosts the vast geological records of its evolution from the Archean to the Recent, including the youngest (∼65 Ma) episode of the Réunion mantle plume activity that produced a large igneous province, the Deccan Volcanic Province (DVP). A three-dimensional lithospheric resistivity image of central-western India is obtained to understand the lithospheric architecture and map any major eruption channels of the Deccan volcanism as no explicit geophysical revelation of such pathways of magma ascend has yet been made. Two high conductivity (< 30 Ωm) pipe-like geometric features originating from a common deep mantle conductive zone under the Malwa plateau (northernmost lobe of the DVP) and its proximity are detected in the resistivity model. These are interpreted to be remnants of the hitherto unknown primary lithospheric pathways of magma ascent from the deep mantle melt-rich zone related to the Reunion mantle plume upwelling under central-western India. This study gives first compelling geophysical evidence of key eruptive centers of the massive Deccan volcanism in central-western India at a locale not anticipated earlier. High to moderate conductivity crustal zones and weak to moderate lithospheric mantle resistivity in most parts of the study region represent an intense and multiphase tectono-magmatic evolution of the region spanning from the Neoproterozoic to the Cretaceous-Paleogene boundary.</div></div>\",\"PeriodicalId\":22257,\"journal\":{\"name\":\"Tectonophysics\",\"volume\":\"894 \",\"pages\":\"Article 230558\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040195124003603\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195124003603","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Mantle conduits of the K-Pg Reunion mantle plume rise beneath the Indian subcontinent revealed by 3D magnetotelluric imaging
The central-western region of the Indian subcontinent hosts the vast geological records of its evolution from the Archean to the Recent, including the youngest (∼65 Ma) episode of the Réunion mantle plume activity that produced a large igneous province, the Deccan Volcanic Province (DVP). A three-dimensional lithospheric resistivity image of central-western India is obtained to understand the lithospheric architecture and map any major eruption channels of the Deccan volcanism as no explicit geophysical revelation of such pathways of magma ascend has yet been made. Two high conductivity (< 30 Ωm) pipe-like geometric features originating from a common deep mantle conductive zone under the Malwa plateau (northernmost lobe of the DVP) and its proximity are detected in the resistivity model. These are interpreted to be remnants of the hitherto unknown primary lithospheric pathways of magma ascent from the deep mantle melt-rich zone related to the Reunion mantle plume upwelling under central-western India. This study gives first compelling geophysical evidence of key eruptive centers of the massive Deccan volcanism in central-western India at a locale not anticipated earlier. High to moderate conductivity crustal zones and weak to moderate lithospheric mantle resistivity in most parts of the study region represent an intense and multiphase tectono-magmatic evolution of the region spanning from the Neoproterozoic to the Cretaceous-Paleogene boundary.
期刊介绍:
The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods