用于分析量子纠错协议鲁棒性的混合哈密顿模拟方法

Benjamin Gys;Lander Burgelman;Kristiaan De Greve;Georges Gielen;Francky Catthoor
{"title":"用于分析量子纠错协议鲁棒性的混合哈密顿模拟方法","authors":"Benjamin Gys;Lander Burgelman;Kristiaan De Greve;Georges Gielen;Francky Catthoor","doi":"10.1109/TQE.2024.3486546","DOIUrl":null,"url":null,"abstract":"The development of future full-scale quantum computers (QCs) not only comprises the design of good quality qubits, but also entails the design of classical complementary metal–oxide semiconductor (CMOS) control circuitry and optimized operation protocols. The construction and implementation of quantum error correction (QEC) protocols, necessary for correcting the errors that inevitably occur in the physical qubit layer, form a crucial step in this design process. The steadily rising numbers of qubits in a single system make the development of small-scale quantum architectures that are able to execute such protocols a pressing challenge. Similar to classical systems, optimized simulation tools can greatly improve the efficiency of the design process. We propose an automated simulation framework for the development of qubit microarchitectures, in which the effects of design choices in the physical qubit layer on the performance of QEC protocols can be evaluated, whereas the focus in the current state-of-the-art design tools only lies on the simulation of the individual quantum gates. The hybrid Hamiltonian framework introduces the innovative combination of a hybrid nature that allows to incorporate several levels throughout the QC stack, with optimized embedded solvers. This provides the level of detail required for an in-depth analysis of the QEC protocol's stability.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735416","citationCount":"0","resultStr":"{\"title\":\"Hybrid Hamiltonian Simulation Approach for the Analysis of Quantum Error Correction Protocol Robustness\",\"authors\":\"Benjamin Gys;Lander Burgelman;Kristiaan De Greve;Georges Gielen;Francky Catthoor\",\"doi\":\"10.1109/TQE.2024.3486546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of future full-scale quantum computers (QCs) not only comprises the design of good quality qubits, but also entails the design of classical complementary metal–oxide semiconductor (CMOS) control circuitry and optimized operation protocols. The construction and implementation of quantum error correction (QEC) protocols, necessary for correcting the errors that inevitably occur in the physical qubit layer, form a crucial step in this design process. The steadily rising numbers of qubits in a single system make the development of small-scale quantum architectures that are able to execute such protocols a pressing challenge. Similar to classical systems, optimized simulation tools can greatly improve the efficiency of the design process. We propose an automated simulation framework for the development of qubit microarchitectures, in which the effects of design choices in the physical qubit layer on the performance of QEC protocols can be evaluated, whereas the focus in the current state-of-the-art design tools only lies on the simulation of the individual quantum gates. The hybrid Hamiltonian framework introduces the innovative combination of a hybrid nature that allows to incorporate several levels throughout the QC stack, with optimized embedded solvers. This provides the level of detail required for an in-depth analysis of the QEC protocol's stability.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735416\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735416/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10735416/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

未来全量子计算机(QC)的开发不仅包括高质量量子比特的设计,还包括经典互补金属氧化物半导体(CMOS)控制电路和优化操作协议的设计。量子纠错(QEC)协议是纠正物理量子比特层不可避免出现的错误所必需的,其构建和实施是这一设计过程的关键步骤。随着单个系统中量子比特数量的稳步上升,开发能够执行此类协议的小规模量子架构成为一项紧迫的挑战。与经典系统类似,优化的仿真工具可以大大提高设计过程的效率。我们为量子比特微体系结构的开发提出了一个自动仿真框架,在这个框架中,可以评估物理量子比特层的设计选择对 QEC 协议性能的影响,而目前最先进的设计工具只关注单个量子门的仿真。混合哈密顿框架引入了混合性质的创新组合,可以将整个量子计算堆栈的多个层次与优化的嵌入式求解器结合起来。这为深入分析 QEC 协议的稳定性提供了所需的详细程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Hamiltonian Simulation Approach for the Analysis of Quantum Error Correction Protocol Robustness
The development of future full-scale quantum computers (QCs) not only comprises the design of good quality qubits, but also entails the design of classical complementary metal–oxide semiconductor (CMOS) control circuitry and optimized operation protocols. The construction and implementation of quantum error correction (QEC) protocols, necessary for correcting the errors that inevitably occur in the physical qubit layer, form a crucial step in this design process. The steadily rising numbers of qubits in a single system make the development of small-scale quantum architectures that are able to execute such protocols a pressing challenge. Similar to classical systems, optimized simulation tools can greatly improve the efficiency of the design process. We propose an automated simulation framework for the development of qubit microarchitectures, in which the effects of design choices in the physical qubit layer on the performance of QEC protocols can be evaluated, whereas the focus in the current state-of-the-art design tools only lies on the simulation of the individual quantum gates. The hybrid Hamiltonian framework introduces the innovative combination of a hybrid nature that allows to incorporate several levels throughout the QC stack, with optimized embedded solvers. This provides the level of detail required for an in-depth analysis of the QEC protocol's stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
IEEE Transactions on Quantum Engineering Publication Information Dissipative Variational Quantum Algorithms for Gibbs State Preparation TAQNet: Traffic-Aware Minimum-Cost Quantum Communication Network Planning FPGA-Based Synchronization of Frequency-Domain Interferometer for QKD Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1