LATUP-Net:用于脑肿瘤分割的并行卷积轻量级 3D 注意 U-Net

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-11-21 DOI:10.1016/j.compbiomed.2024.109353
Ebtihal J. Alwadee , Xianfang Sun , Yipeng Qin , Frank C. Langbein
{"title":"LATUP-Net:用于脑肿瘤分割的并行卷积轻量级 3D 注意 U-Net","authors":"Ebtihal J. Alwadee ,&nbsp;Xianfang Sun ,&nbsp;Yipeng Qin ,&nbsp;Frank C. Langbein","doi":"10.1016/j.compbiomed.2024.109353","DOIUrl":null,"url":null,"abstract":"<div><div>Early-stage 3D brain tumor segmentation from magnetic resonance imaging (MRI) scans is crucial for prompt and effective treatment. However, this process faces the challenge of precise delineation due to the tumors’ complex heterogeneity. Moreover, energy sustainability targets and resource limitations, especially in developing countries, require efficient and accessible medical imaging solutions. The proposed architecture, a Lightweight 3D ATtention U-Net with Parallel convolutions, LATUP-Net, addresses these issues. It is specifically designed to reduce computational requirements significantly while maintaining high segmentation performance. By incorporating parallel convolutions, it enhances feature representation by capturing multi-scale information. It further integrates an attention mechanism to refine segmentation through selective feature recalibration. LATUP-Net achieves promising segmentation performance: the average Dice scores for the whole tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%, and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively. Hausdorff distance metrics further indicate its improved ability to delineate tumor boundaries. With its significantly reduced computational demand using only 3.07 M parameters, about 59 times fewer than other state-of-the-art models, and running on a single NVIDIA GeForce RTX3060 12 GB GPU, LATUP-Net requires just 15.79 GFLOPs. This makes it a promising solution for real-world clinical applications, particularly in settings with limited resources. Investigations into the model’s interpretability, utilizing gradient-weighted class activation mapping and confusion matrices, reveal that while attention mechanisms enhance the segmentation of small regions, their impact is nuanced. Achieving the most accurate tumor delineation requires carefully balancing local and global features. The code is available at <span><span>https://qyber.black/ca/code-bca</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109353"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LATUP-Net: A lightweight 3D attention U-Net with parallel convolutions for brain tumor segmentation\",\"authors\":\"Ebtihal J. Alwadee ,&nbsp;Xianfang Sun ,&nbsp;Yipeng Qin ,&nbsp;Frank C. Langbein\",\"doi\":\"10.1016/j.compbiomed.2024.109353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Early-stage 3D brain tumor segmentation from magnetic resonance imaging (MRI) scans is crucial for prompt and effective treatment. However, this process faces the challenge of precise delineation due to the tumors’ complex heterogeneity. Moreover, energy sustainability targets and resource limitations, especially in developing countries, require efficient and accessible medical imaging solutions. The proposed architecture, a Lightweight 3D ATtention U-Net with Parallel convolutions, LATUP-Net, addresses these issues. It is specifically designed to reduce computational requirements significantly while maintaining high segmentation performance. By incorporating parallel convolutions, it enhances feature representation by capturing multi-scale information. It further integrates an attention mechanism to refine segmentation through selective feature recalibration. LATUP-Net achieves promising segmentation performance: the average Dice scores for the whole tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%, and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively. Hausdorff distance metrics further indicate its improved ability to delineate tumor boundaries. With its significantly reduced computational demand using only 3.07 M parameters, about 59 times fewer than other state-of-the-art models, and running on a single NVIDIA GeForce RTX3060 12 GB GPU, LATUP-Net requires just 15.79 GFLOPs. This makes it a promising solution for real-world clinical applications, particularly in settings with limited resources. Investigations into the model’s interpretability, utilizing gradient-weighted class activation mapping and confusion matrices, reveal that while attention mechanisms enhance the segmentation of small regions, their impact is nuanced. Achieving the most accurate tumor delineation requires carefully balancing local and global features. The code is available at <span><span>https://qyber.black/ca/code-bca</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109353\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524014380\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014380","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从磁共振成像(MRI)扫描中进行早期三维脑肿瘤分割对于及时有效的治疗至关重要。然而,由于肿瘤的复杂异质性,这一过程面临着精确划分的挑战。此外,能源可持续发展目标和资源限制,尤其是在发展中国家,都需要高效、便捷的医学成像解决方案。所提出的架构--具有并行卷积功能的轻量级 3D ATtention U-Net(LATUP-Net)--可以解决这些问题。该架构专为在保持高分割性能的同时大幅降低计算要求而设计。通过并行卷积,它能捕捉多尺度信息,从而增强特征表示。它还进一步整合了注意力机制,通过选择性特征重新校准来完善分割。LATUP-Net 实现了良好的分割性能:在 BraTS 2020 数据集上,整个肿瘤、肿瘤核心和增强肿瘤的平均 Dice 分数分别为 88.41%、83.82% 和 73.67%;在 BraTS 2021 数据集上,它们分别为 90.29%、89.54% 和 83.92%。豪斯多夫距离指标进一步表明,它的肿瘤边界划分能力有所提高。LATUP-Net 仅使用 3.07 M 个参数,大大降低了计算需求,是其他最先进模型的 59 倍,在单个 NVIDIA GeForce RTX3060 12 GB GPU 上运行仅需 15.79 GFLOPs。这使它成为现实世界临床应用的理想解决方案,尤其是在资源有限的环境中。利用梯度加权类激活映射和混淆矩阵对模型的可解释性进行的研究表明,虽然注意力机制增强了对小区域的分割,但其影响是微妙的。要实现最准确的肿瘤划分,需要仔细平衡局部和全局特征。代码见 https://qyber.black/ca/code-bca。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LATUP-Net: A lightweight 3D attention U-Net with parallel convolutions for brain tumor segmentation
Early-stage 3D brain tumor segmentation from magnetic resonance imaging (MRI) scans is crucial for prompt and effective treatment. However, this process faces the challenge of precise delineation due to the tumors’ complex heterogeneity. Moreover, energy sustainability targets and resource limitations, especially in developing countries, require efficient and accessible medical imaging solutions. The proposed architecture, a Lightweight 3D ATtention U-Net with Parallel convolutions, LATUP-Net, addresses these issues. It is specifically designed to reduce computational requirements significantly while maintaining high segmentation performance. By incorporating parallel convolutions, it enhances feature representation by capturing multi-scale information. It further integrates an attention mechanism to refine segmentation through selective feature recalibration. LATUP-Net achieves promising segmentation performance: the average Dice scores for the whole tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%, and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively. Hausdorff distance metrics further indicate its improved ability to delineate tumor boundaries. With its significantly reduced computational demand using only 3.07 M parameters, about 59 times fewer than other state-of-the-art models, and running on a single NVIDIA GeForce RTX3060 12 GB GPU, LATUP-Net requires just 15.79 GFLOPs. This makes it a promising solution for real-world clinical applications, particularly in settings with limited resources. Investigations into the model’s interpretability, utilizing gradient-weighted class activation mapping and confusion matrices, reveal that while attention mechanisms enhance the segmentation of small regions, their impact is nuanced. Achieving the most accurate tumor delineation requires carefully balancing local and global features. The code is available at https://qyber.black/ca/code-bca.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1