Junyang Liu , Bin Liu , Qing Mu , Jiasen Liu , Yunhua Li , Wendian Gong , Tergel Chahaer , Yukun Song , Erhan Hai , Haoyuan Wang , Yanjun Zhang , Yanhong Zhao
{"title":"褪黑素通过激活chi-let-7d-5p/WNT2轴促进羊绒山羊真皮乳头细胞的增殖。","authors":"Junyang Liu , Bin Liu , Qing Mu , Jiasen Liu , Yunhua Li , Wendian Gong , Tergel Chahaer , Yukun Song , Erhan Hai , Haoyuan Wang , Yanjun Zhang , Yanhong Zhao","doi":"10.1016/j.ygeno.2024.110961","DOIUrl":null,"url":null,"abstract":"<div><div>Exogenous melatonin promotes the differentiation of secondary hair follicles in Cashmere goats, thereby improving cashmere production. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional gene expression and influence hair follicle growth. However, the mechanism through which melatonin regulates hair follicle development via miRNA mediation remains unclear. In this study, we used RNA-seq to identify differentially expressed (DE) miRNAs during melatonin-induced growth of secondary hair follicles in inner Mongolian Cashmere goats. In total, 170 DE miRNAs were identified. Enrichment analysis revealed that the target genes of these DE miRNAs were related to biological processes such as protein modification; cytoskeletal components; and the Notch, Wnt, and MAPK signaling pathways. The miRNA-mRNA regulatory network suggested that the DE miRNA chi-let-7d-5p negatively regulates <em>WNT2</em> expression. Mechanistic studies revealed that melatonin promotes the proliferation of DP cells in Cashmere goats via the chi-let-7d-5p/<em>WNT2</em> axis.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 6","pages":"Article 110961"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin promotes the proliferation of dermal papilla cells in cashmere goats via activation of chi-let-7d-5p/WNT2 axis\",\"authors\":\"Junyang Liu , Bin Liu , Qing Mu , Jiasen Liu , Yunhua Li , Wendian Gong , Tergel Chahaer , Yukun Song , Erhan Hai , Haoyuan Wang , Yanjun Zhang , Yanhong Zhao\",\"doi\":\"10.1016/j.ygeno.2024.110961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Exogenous melatonin promotes the differentiation of secondary hair follicles in Cashmere goats, thereby improving cashmere production. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional gene expression and influence hair follicle growth. However, the mechanism through which melatonin regulates hair follicle development via miRNA mediation remains unclear. In this study, we used RNA-seq to identify differentially expressed (DE) miRNAs during melatonin-induced growth of secondary hair follicles in inner Mongolian Cashmere goats. In total, 170 DE miRNAs were identified. Enrichment analysis revealed that the target genes of these DE miRNAs were related to biological processes such as protein modification; cytoskeletal components; and the Notch, Wnt, and MAPK signaling pathways. The miRNA-mRNA regulatory network suggested that the DE miRNA chi-let-7d-5p negatively regulates <em>WNT2</em> expression. Mechanistic studies revealed that melatonin promotes the proliferation of DP cells in Cashmere goats via the chi-let-7d-5p/<em>WNT2</em> axis.</div></div>\",\"PeriodicalId\":12521,\"journal\":{\"name\":\"Genomics\",\"volume\":\"116 6\",\"pages\":\"Article 110961\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001824\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001824","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
外源性褪黑激素可促进羊绒山羊次级毛囊的分化,从而提高羊绒产量。微RNA(miRNA)在转录后基因表达调控中发挥着重要作用,并影响着毛囊的生长。然而,褪黑激素通过 miRNA 介导调节毛囊发育的机制仍不清楚。在这项研究中,我们利用RNA-seq鉴定了褪黑激素诱导内蒙古羊绒山羊次级毛囊生长过程中的差异表达(DE)miRNA。共鉴定出 170 个 DE miRNA。富集分析显示,这些 DE miRNA 的靶基因与蛋白质修饰、细胞骨架成分、Notch、Wnt 和 MAPK 信号通路等生物过程有关。miRNA-mRNA调控网络表明,DE miRNA chi-let-7d-5p 负向调控 WNT2 的表达。机理研究发现,褪黑激素通过chi-let-7d-5p/WNT2轴促进羊绒山羊DP细胞的增殖。
Melatonin promotes the proliferation of dermal papilla cells in cashmere goats via activation of chi-let-7d-5p/WNT2 axis
Exogenous melatonin promotes the differentiation of secondary hair follicles in Cashmere goats, thereby improving cashmere production. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional gene expression and influence hair follicle growth. However, the mechanism through which melatonin regulates hair follicle development via miRNA mediation remains unclear. In this study, we used RNA-seq to identify differentially expressed (DE) miRNAs during melatonin-induced growth of secondary hair follicles in inner Mongolian Cashmere goats. In total, 170 DE miRNAs were identified. Enrichment analysis revealed that the target genes of these DE miRNAs were related to biological processes such as protein modification; cytoskeletal components; and the Notch, Wnt, and MAPK signaling pathways. The miRNA-mRNA regulatory network suggested that the DE miRNA chi-let-7d-5p negatively regulates WNT2 expression. Mechanistic studies revealed that melatonin promotes the proliferation of DP cells in Cashmere goats via the chi-let-7d-5p/WNT2 axis.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.