Sheng Lu, Yang Liu, Ming Li, Qijin Ge, Chongwei Wang, Yu Song, Bo Zhou, Songlin Chen
{"title":"番茄后腿鱼(Cephalopholis sonnerati)的无间隙端粒-端粒单倍型组装。","authors":"Sheng Lu, Yang Liu, Ming Li, Qijin Ge, Chongwei Wang, Yu Song, Bo Zhou, Songlin Chen","doi":"10.1038/s41597-024-04093-3","DOIUrl":null,"url":null,"abstract":"<p><p>The tomato hind (Cephalopholis sonnerati) is an emerging economically important grouper in recent years. With the increasing maturity of sequencing technologies and assembly methodologies, a higher quality reference genome has become both accessible and necessary. In this study, we present two telomere-to-telomere (T2T) gap-free haplotype assemblies of the tomato hind with lengths of 1039.53 Mb (YSFRI_Csonn_HA_1.0, N50 43.83 Mb) and 1039.91 Mb (YSFRI_Csonn_HB_1.0, N50 44.09 Mb). Reads from next-generation sequencing, ONT ultra-long sequencing, and PacBio HiFi sequencing exhibited mapping rates exceeding 99.8% when aligned to these two assemblies. Evaluation using Merqury indicated high accuracy for both assemblies, with average quality values of 51.80 and 51.83, respectively. Percentages of 97.9% and 97.8% of complete BUSCOs were achieved, and a total of 23,270 and 23,184 protein-code genes were inferred in each assembly. Moreover, telomere identification, centromere prediction, and repetitive sequence annotation were also successfully performed. These two assemblies provide robust foundation for the genetic analysis and development of molecular genetic breeding technologies in C. sonnerati.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1268"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584678/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gap-free telomere-to-telomere haplotype assembly of the tomato hind (Cephalopholis sonnerati).\",\"authors\":\"Sheng Lu, Yang Liu, Ming Li, Qijin Ge, Chongwei Wang, Yu Song, Bo Zhou, Songlin Chen\",\"doi\":\"10.1038/s41597-024-04093-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The tomato hind (Cephalopholis sonnerati) is an emerging economically important grouper in recent years. With the increasing maturity of sequencing technologies and assembly methodologies, a higher quality reference genome has become both accessible and necessary. In this study, we present two telomere-to-telomere (T2T) gap-free haplotype assemblies of the tomato hind with lengths of 1039.53 Mb (YSFRI_Csonn_HA_1.0, N50 43.83 Mb) and 1039.91 Mb (YSFRI_Csonn_HB_1.0, N50 44.09 Mb). Reads from next-generation sequencing, ONT ultra-long sequencing, and PacBio HiFi sequencing exhibited mapping rates exceeding 99.8% when aligned to these two assemblies. Evaluation using Merqury indicated high accuracy for both assemblies, with average quality values of 51.80 and 51.83, respectively. Percentages of 97.9% and 97.8% of complete BUSCOs were achieved, and a total of 23,270 and 23,184 protein-code genes were inferred in each assembly. Moreover, telomere identification, centromere prediction, and repetitive sequence annotation were also successfully performed. These two assemblies provide robust foundation for the genetic analysis and development of molecular genetic breeding technologies in C. sonnerati.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1268\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584678/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04093-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04093-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Gap-free telomere-to-telomere haplotype assembly of the tomato hind (Cephalopholis sonnerati).
The tomato hind (Cephalopholis sonnerati) is an emerging economically important grouper in recent years. With the increasing maturity of sequencing technologies and assembly methodologies, a higher quality reference genome has become both accessible and necessary. In this study, we present two telomere-to-telomere (T2T) gap-free haplotype assemblies of the tomato hind with lengths of 1039.53 Mb (YSFRI_Csonn_HA_1.0, N50 43.83 Mb) and 1039.91 Mb (YSFRI_Csonn_HB_1.0, N50 44.09 Mb). Reads from next-generation sequencing, ONT ultra-long sequencing, and PacBio HiFi sequencing exhibited mapping rates exceeding 99.8% when aligned to these two assemblies. Evaluation using Merqury indicated high accuracy for both assemblies, with average quality values of 51.80 and 51.83, respectively. Percentages of 97.9% and 97.8% of complete BUSCOs were achieved, and a total of 23,270 and 23,184 protein-code genes were inferred in each assembly. Moreover, telomere identification, centromere prediction, and repetitive sequence annotation were also successfully performed. These two assemblies provide robust foundation for the genetic analysis and development of molecular genetic breeding technologies in C. sonnerati.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.