{"title":"用于增强子特征描述和识别的多视角深度学习框架。","authors":"Liwei Liu , Zhebin Tan , Yuxiao Wei , Qianhui Sun","doi":"10.1016/j.compbiolchem.2024.108284","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancers are vital elements in the genome that boost the transcriptional activity of neighboring genes and are essential in regulating cell-specific gene expression. Therefore, accurately identifying and characterizing enhancers is essential for comprehending gene regulatory networks and the development of related diseases. This study introduces MPDL-Enhancer, a novel multi-perspective deep learning framework aimed at enhancer characterization and identification. In this study, enhancer sequences are encoded using the dna2vec model along with features derived from the structural properties of DNA sequences. Subsequently, these representations are processed through a novel dual-scale deep neural network designed to discern subtle correlations and extended interactions embedded within the semantic content of DNA. The predictive phase of our methodology employs a Support Vector Machine classifier to render the final classification. To rigorously assess the efficacy of our approach, a comprehensive evaluation was executed utilizing an independent test dataset, thereby substantiating the robustness and accuracy of our model. Our methodology demonstrated superior performance over existing computational techniques, with an accuracy (ACC) of 81.00 %, a sensitivity (SN) of 79.00 %, and specificity (SP) of 83.00 %. The innovative dual-scale deep neural network and the unique feature representation strategy contributed to this performance improvement. MPDL-Enhancer has effectively characterized enhancer sequences and achieved excellent predictive performance. Building upon this foundation, we conducted an interpretability analysis of the model, which can assist researchers in identifying key features and patterns that affect the functionality of enhancers, thereby promoting a deeper understanding of gene regulatory networks.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"114 ","pages":"Article 108284"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-perspective deep learning framework for enhancer characterization and identification\",\"authors\":\"Liwei Liu , Zhebin Tan , Yuxiao Wei , Qianhui Sun\",\"doi\":\"10.1016/j.compbiolchem.2024.108284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enhancers are vital elements in the genome that boost the transcriptional activity of neighboring genes and are essential in regulating cell-specific gene expression. Therefore, accurately identifying and characterizing enhancers is essential for comprehending gene regulatory networks and the development of related diseases. This study introduces MPDL-Enhancer, a novel multi-perspective deep learning framework aimed at enhancer characterization and identification. In this study, enhancer sequences are encoded using the dna2vec model along with features derived from the structural properties of DNA sequences. Subsequently, these representations are processed through a novel dual-scale deep neural network designed to discern subtle correlations and extended interactions embedded within the semantic content of DNA. The predictive phase of our methodology employs a Support Vector Machine classifier to render the final classification. To rigorously assess the efficacy of our approach, a comprehensive evaluation was executed utilizing an independent test dataset, thereby substantiating the robustness and accuracy of our model. Our methodology demonstrated superior performance over existing computational techniques, with an accuracy (ACC) of 81.00 %, a sensitivity (SN) of 79.00 %, and specificity (SP) of 83.00 %. The innovative dual-scale deep neural network and the unique feature representation strategy contributed to this performance improvement. MPDL-Enhancer has effectively characterized enhancer sequences and achieved excellent predictive performance. Building upon this foundation, we conducted an interpretability analysis of the model, which can assist researchers in identifying key features and patterns that affect the functionality of enhancers, thereby promoting a deeper understanding of gene regulatory networks.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"114 \",\"pages\":\"Article 108284\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S147692712400272X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147692712400272X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
增强子是基因组中的重要元素,能增强邻近基因的转录活性,对调控细胞特异性基因表达至关重要。因此,准确识别和描述增强子对于理解基因调控网络和相关疾病的发展至关重要。本研究介绍了MPDL-Enhancer,这是一种新颖的多视角深度学习框架,旨在对增强子进行表征和识别。在这项研究中,增强子序列使用 dna2vec 模型以及从 DNA 序列结构特性中提取的特征进行编码。随后,这些表征通过新型双尺度深度神经网络进行处理,该网络旨在识别嵌入 DNA 语义内容中的微妙关联和扩展交互。我们方法的预测阶段采用支持向量机分类器进行最终分类。为了严格评估我们方法的功效,我们利用一个独立的测试数据集进行了全面评估,从而证实了我们模型的稳健性和准确性。与现有的计算技术相比,我们的方法表现出卓越的性能,准确率(ACC)为 81.00%,灵敏度(SN)为 79.00%,特异性(SP)为 83.00%。创新的双尺度深度神经网络和独特的特征表示策略为性能的提高做出了贡献。MPDL-Enhancer 有效地描述了增强子序列的特征,并实现了出色的预测性能。在此基础上,我们对模型进行了可解释性分析,这有助于研究人员识别影响增强子功能的关键特征和模式,从而促进对基因调控网络的深入理解。
A multi-perspective deep learning framework for enhancer characterization and identification
Enhancers are vital elements in the genome that boost the transcriptional activity of neighboring genes and are essential in regulating cell-specific gene expression. Therefore, accurately identifying and characterizing enhancers is essential for comprehending gene regulatory networks and the development of related diseases. This study introduces MPDL-Enhancer, a novel multi-perspective deep learning framework aimed at enhancer characterization and identification. In this study, enhancer sequences are encoded using the dna2vec model along with features derived from the structural properties of DNA sequences. Subsequently, these representations are processed through a novel dual-scale deep neural network designed to discern subtle correlations and extended interactions embedded within the semantic content of DNA. The predictive phase of our methodology employs a Support Vector Machine classifier to render the final classification. To rigorously assess the efficacy of our approach, a comprehensive evaluation was executed utilizing an independent test dataset, thereby substantiating the robustness and accuracy of our model. Our methodology demonstrated superior performance over existing computational techniques, with an accuracy (ACC) of 81.00 %, a sensitivity (SN) of 79.00 %, and specificity (SP) of 83.00 %. The innovative dual-scale deep neural network and the unique feature representation strategy contributed to this performance improvement. MPDL-Enhancer has effectively characterized enhancer sequences and achieved excellent predictive performance. Building upon this foundation, we conducted an interpretability analysis of the model, which can assist researchers in identifying key features and patterns that affect the functionality of enhancers, thereby promoting a deeper understanding of gene regulatory networks.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.