n 型聚合物热电的集成材料设计和工艺工程

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-10-09 DOI:10.1021/jacsau.4c0063810.1021/jacsau.4c00638
Xin-Yu Deng, Zhi Zhang and Ting Lei*, 
{"title":"n 型聚合物热电的集成材料设计和工艺工程","authors":"Xin-Yu Deng,&nbsp;Zhi Zhang and Ting Lei*,&nbsp;","doi":"10.1021/jacsau.4c0063810.1021/jacsau.4c00638","DOIUrl":null,"url":null,"abstract":"<p >Polymer thermoelectrics (TEs) have attracted increasing interest in recent years, owing to their great potential in intimate integration with wearable electronics for powering small electronics/sensors and personal temperature regulation. Over the past few decades, substantial progress has been made in enhancing polymer TE performance. However, the electrical conductivity and power factor of most n-doped polymers are about an order of magnitude lower than those of their p-type counterparts, impeding the development of highly efficient polymer TE devices. In addition, unlike well-studied inorganic materials, the complex charge transport mechanism and polymer–dopant interactions in polymer TE materials have hindered a comprehensive understanding of the structure–property relationships. This Perspective aims to survey recent achievements in understanding the charge transport mechanism and selectively provide some critical insights into molecular design and process engineering for n-type polymer TEs. We also highlight the great potential of polymer TEs in wearable electronics and offer an outlook for future development.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4066–4083 4066–4083"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00638","citationCount":"0","resultStr":"{\"title\":\"Integrated Materials Design and Process Engineering for n-Type Polymer Thermoelectrics\",\"authors\":\"Xin-Yu Deng,&nbsp;Zhi Zhang and Ting Lei*,&nbsp;\",\"doi\":\"10.1021/jacsau.4c0063810.1021/jacsau.4c00638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymer thermoelectrics (TEs) have attracted increasing interest in recent years, owing to their great potential in intimate integration with wearable electronics for powering small electronics/sensors and personal temperature regulation. Over the past few decades, substantial progress has been made in enhancing polymer TE performance. However, the electrical conductivity and power factor of most n-doped polymers are about an order of magnitude lower than those of their p-type counterparts, impeding the development of highly efficient polymer TE devices. In addition, unlike well-studied inorganic materials, the complex charge transport mechanism and polymer–dopant interactions in polymer TE materials have hindered a comprehensive understanding of the structure–property relationships. This Perspective aims to survey recent achievements in understanding the charge transport mechanism and selectively provide some critical insights into molecular design and process engineering for n-type polymer TEs. We also highlight the great potential of polymer TEs in wearable electronics and offer an outlook for future development.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"4 11\",\"pages\":\"4066–4083 4066–4083\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00638\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.4c00638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,聚合物热电(TE)在与可穿戴电子设备紧密结合,为小型电子设备/传感器供电以及调节个人体温方面具有巨大潜力,因此吸引了越来越多的关注。过去几十年来,在提高聚合物热电半导体性能方面取得了长足的进步。然而,大多数 n 型掺杂聚合物的导电性和功率因数比 p 型聚合物低大约一个数量级,阻碍了高效聚合物 TE 器件的开发。此外,与研究透彻的无机材料不同,聚合物 TE 材料中复杂的电荷传输机制和聚合物-掺杂剂相互作用阻碍了对其结构-性能关系的全面了解。本视角旨在考察近年来在理解电荷传输机制方面取得的成就,并有选择性地为 n 型聚合物 TE 的分子设计和工艺工程提供一些重要见解。我们还强调了聚合物 TE 在可穿戴电子设备中的巨大潜力,并对未来发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Materials Design and Process Engineering for n-Type Polymer Thermoelectrics

Polymer thermoelectrics (TEs) have attracted increasing interest in recent years, owing to their great potential in intimate integration with wearable electronics for powering small electronics/sensors and personal temperature regulation. Over the past few decades, substantial progress has been made in enhancing polymer TE performance. However, the electrical conductivity and power factor of most n-doped polymers are about an order of magnitude lower than those of their p-type counterparts, impeding the development of highly efficient polymer TE devices. In addition, unlike well-studied inorganic materials, the complex charge transport mechanism and polymer–dopant interactions in polymer TE materials have hindered a comprehensive understanding of the structure–property relationships. This Perspective aims to survey recent achievements in understanding the charge transport mechanism and selectively provide some critical insights into molecular design and process engineering for n-type polymer TEs. We also highlight the great potential of polymer TEs in wearable electronics and offer an outlook for future development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1