使用液相色谱/ESI质谱法同时定量测定不同品种的蚕豆中的生物活性化合物:化学计量学方法

IF 1.2 4区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Chromatographia Pub Date : 2024-09-30 DOI:10.1007/s10337-024-04368-2
Shiv Nandan, Mohd Amish Khan, Mohsin Ali Khan, Vijaya Shukla, Madhumita Srivastava, Mohammad Faheem Khan
{"title":"使用液相色谱/ESI质谱法同时定量测定不同品种的蚕豆中的生物活性化合物:化学计量学方法","authors":"Shiv Nandan,&nbsp;Mohd Amish Khan,&nbsp;Mohsin Ali Khan,&nbsp;Vijaya Shukla,&nbsp;Madhumita Srivastava,&nbsp;Mohammad Faheem Khan","doi":"10.1007/s10337-024-04368-2","DOIUrl":null,"url":null,"abstract":"<div><p>Cultivated <i>Arachis hypogaea</i> L., is commonly known as peanut. Its seed coat, also referred to as a shell, plays a critical role in safeguarding the seeds and facilitating the transportation of diverse metabolites. In the current work, an examination of metabolite profiling was executed utilizing UPLC-ESI–MS/MS in the seed coat (SeC), seed skin (SeS), and seed pulp (SeP) of four distinct peanut varieties of different geographical locations in India. The method was also validated according to ICH guidelines. A linear detector response was observed within a concentration range of 0.019–20.0 ng/mL, <i>R</i><sup>2</sup> = 0.999. The limit of detection (LOD) and quantification (LOQ) of the targeted compounds were found to be within the range of 0.075–0.426 and 0.227–1.292 ng/mL, respectively. The intra-day and inter-day precision demonstrated relative standard deviation %RSD &lt; 2%. The results of Principal Component Analysis (PCA) have demonstrated that the differentiation between varieties of peanut is attributable to the existence of luteolin and rutin having a greater impact on the identification of varieties.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":518,"journal":{"name":"Chromatographia","volume":"87 11-12","pages":"773 - 784"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Quantitation of Bioactive Compounds in Different Varieties of Arachis Hypogea L. Using Liquid Chromatography/ESI Mass Spectrometry: A Chemometric Approach\",\"authors\":\"Shiv Nandan,&nbsp;Mohd Amish Khan,&nbsp;Mohsin Ali Khan,&nbsp;Vijaya Shukla,&nbsp;Madhumita Srivastava,&nbsp;Mohammad Faheem Khan\",\"doi\":\"10.1007/s10337-024-04368-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cultivated <i>Arachis hypogaea</i> L., is commonly known as peanut. Its seed coat, also referred to as a shell, plays a critical role in safeguarding the seeds and facilitating the transportation of diverse metabolites. In the current work, an examination of metabolite profiling was executed utilizing UPLC-ESI–MS/MS in the seed coat (SeC), seed skin (SeS), and seed pulp (SeP) of four distinct peanut varieties of different geographical locations in India. The method was also validated according to ICH guidelines. A linear detector response was observed within a concentration range of 0.019–20.0 ng/mL, <i>R</i><sup>2</sup> = 0.999. The limit of detection (LOD) and quantification (LOQ) of the targeted compounds were found to be within the range of 0.075–0.426 and 0.227–1.292 ng/mL, respectively. The intra-day and inter-day precision demonstrated relative standard deviation %RSD &lt; 2%. The results of Principal Component Analysis (PCA) have demonstrated that the differentiation between varieties of peanut is attributable to the existence of luteolin and rutin having a greater impact on the identification of varieties.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":518,\"journal\":{\"name\":\"Chromatographia\",\"volume\":\"87 11-12\",\"pages\":\"773 - 784\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromatographia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10337-024-04368-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromatographia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10337-024-04368-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

栽培花生(Arachis hypogaea L.)俗称花生。它的种皮也被称为外壳,在保护种子和促进各种代谢物的运输方面起着至关重要的作用。在目前的研究中,利用 UPLC-ESI-MS/MS 对印度不同地理位置的四个不同花生品种的种皮(SeC)、种皮(SeS)和种髓(SeP)进行了代谢物分析。该方法还根据 ICH 指南进行了验证。在 0.019-20.0 纳克/毫升的浓度范围内,检测器呈线性响应,R2 = 0.999。目标化合物的检测限(LOD)和定量限(LOQ)分别在 0.075-0.426 和 0.227-1.292 纳克/毫升范围内。日内和日间精密度的相对标准偏差为 2%。主成分分析(PCA)的结果表明,花生品种之间的区分是由于叶黄素和芦丁的存在对品种的识别有较大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous Quantitation of Bioactive Compounds in Different Varieties of Arachis Hypogea L. Using Liquid Chromatography/ESI Mass Spectrometry: A Chemometric Approach

Cultivated Arachis hypogaea L., is commonly known as peanut. Its seed coat, also referred to as a shell, plays a critical role in safeguarding the seeds and facilitating the transportation of diverse metabolites. In the current work, an examination of metabolite profiling was executed utilizing UPLC-ESI–MS/MS in the seed coat (SeC), seed skin (SeS), and seed pulp (SeP) of four distinct peanut varieties of different geographical locations in India. The method was also validated according to ICH guidelines. A linear detector response was observed within a concentration range of 0.019–20.0 ng/mL, R2 = 0.999. The limit of detection (LOD) and quantification (LOQ) of the targeted compounds were found to be within the range of 0.075–0.426 and 0.227–1.292 ng/mL, respectively. The intra-day and inter-day precision demonstrated relative standard deviation %RSD < 2%. The results of Principal Component Analysis (PCA) have demonstrated that the differentiation between varieties of peanut is attributable to the existence of luteolin and rutin having a greater impact on the identification of varieties.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chromatographia
Chromatographia 化学-分析化学
CiteScore
3.40
自引率
5.90%
发文量
103
审稿时长
2.2 months
期刊介绍: Separation sciences, in all their various forms such as chromatography, field-flow fractionation, and electrophoresis, provide some of the most powerful techniques in analytical chemistry and are applied within a number of important application areas, including archaeology, biotechnology, clinical, environmental, food, medical, petroleum, pharmaceutical, polymer and biopolymer research. Beyond serving analytical purposes, separation techniques are also used for preparative and process-scale applications. The scope and power of separation sciences is significantly extended by combination with spectroscopic detection methods (e.g., laser-based approaches, nuclear-magnetic resonance, Raman, chemiluminescence) and particularly, mass spectrometry, to create hyphenated techniques. In addition to exciting new developments in chromatography, such as ultra high-pressure systems, multidimensional separations, and high-temperature approaches, there have also been great advances in hybrid methods combining chromatography and electro-based separations, especially on the micro- and nanoscale. Integrated biological procedures (e.g., enzymatic, immunological, receptor-based assays) can also be part of the overall analytical process.
期刊最新文献
New Comb-Like Polyelectrolytes in Capillary Electrophoresis Identification and Structural Characterization of New Degradation Products in Moxidectin Stressed Samples by LC-HRMS and NMR Systematic Development of a Gradient Elution HPLC Method for the Analysis of Voxelotor and Its Structurally Related Substances Applying Analytical Quality by Design Approach An UPLC Method for Determination of Structural Analogues of DM1: the Payload of Trastuzumab Emtansine (T-DM1) Simultaneous Enrichment and Purification of Licorice Chalcone A and Isoliquiritigenin in Licorice Using a Mixed-Mode Monolith
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1