{"title":"轻松制备具有可调介电性能的 PPy/MWCNTs 复合材料及其优异的电磁波吸收性能","authors":"Liang Zhang, Huixia Feng, Jincheng Lv, Haijing Jiang, Nali Chen, Lin Tan, Jianhui Qiu","doi":"10.1007/s10965-024-04189-9","DOIUrl":null,"url":null,"abstract":"<div><p>Enhanced interfacial polarization is one of the most effective methods for efficient electromagnetic wave absorbing (EMA) performance. In this study, we propose a cladding morphology modulation strategy for preparing high-performance PPy/MWCNTs(PC) by controlling the polymerization cladding morphology of PPy through acid doping using an in-situ polymerization method. By constructing a 3D network structure with a rough surface, many interfaces and pore spaces are generated to increase the multiple reflections and scattering of electromagnetic wave energy, improve the interfacial polarization of the material, and enhance the polarization relaxation process. Meanwhile, the 3D conductive network generated by the cladding provides a channel for electron transfer between MWCNTs and PPy nanoparticles and PC nanorods, which improves the conductivity loss of the material and allows more electromagnetic wave to be dissipated in the form of thermal energy. With the doping acid of p-toluene sulfonic (TsOH), the EMA absorption performance of PC composites can reach a maximum reflection loss(<span>\\({RL}_{min}\\)</span>) of -60.21 dB at the frequency of 8.24 GHz, and the best effective bandwidth (EAB<sub>max</sub>) of 5.04 GHz for single thickness and 14.08 GHz for full-thickness (EAB<sub>sun</sub>), providing excellent EMA performance.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile fabrication of PPy/MWCNTs composites with tunable dielectric properties and their superior electromagnetic wave absorbing performance\",\"authors\":\"Liang Zhang, Huixia Feng, Jincheng Lv, Haijing Jiang, Nali Chen, Lin Tan, Jianhui Qiu\",\"doi\":\"10.1007/s10965-024-04189-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhanced interfacial polarization is one of the most effective methods for efficient electromagnetic wave absorbing (EMA) performance. In this study, we propose a cladding morphology modulation strategy for preparing high-performance PPy/MWCNTs(PC) by controlling the polymerization cladding morphology of PPy through acid doping using an in-situ polymerization method. By constructing a 3D network structure with a rough surface, many interfaces and pore spaces are generated to increase the multiple reflections and scattering of electromagnetic wave energy, improve the interfacial polarization of the material, and enhance the polarization relaxation process. Meanwhile, the 3D conductive network generated by the cladding provides a channel for electron transfer between MWCNTs and PPy nanoparticles and PC nanorods, which improves the conductivity loss of the material and allows more electromagnetic wave to be dissipated in the form of thermal energy. With the doping acid of p-toluene sulfonic (TsOH), the EMA absorption performance of PC composites can reach a maximum reflection loss(<span>\\\\({RL}_{min}\\\\)</span>) of -60.21 dB at the frequency of 8.24 GHz, and the best effective bandwidth (EAB<sub>max</sub>) of 5.04 GHz for single thickness and 14.08 GHz for full-thickness (EAB<sub>sun</sub>), providing excellent EMA performance.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"31 12\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-024-04189-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04189-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Facile fabrication of PPy/MWCNTs composites with tunable dielectric properties and their superior electromagnetic wave absorbing performance
Enhanced interfacial polarization is one of the most effective methods for efficient electromagnetic wave absorbing (EMA) performance. In this study, we propose a cladding morphology modulation strategy for preparing high-performance PPy/MWCNTs(PC) by controlling the polymerization cladding morphology of PPy through acid doping using an in-situ polymerization method. By constructing a 3D network structure with a rough surface, many interfaces and pore spaces are generated to increase the multiple reflections and scattering of electromagnetic wave energy, improve the interfacial polarization of the material, and enhance the polarization relaxation process. Meanwhile, the 3D conductive network generated by the cladding provides a channel for electron transfer between MWCNTs and PPy nanoparticles and PC nanorods, which improves the conductivity loss of the material and allows more electromagnetic wave to be dissipated in the form of thermal energy. With the doping acid of p-toluene sulfonic (TsOH), the EMA absorption performance of PC composites can reach a maximum reflection loss(\({RL}_{min}\)) of -60.21 dB at the frequency of 8.24 GHz, and the best effective bandwidth (EABmax) of 5.04 GHz for single thickness and 14.08 GHz for full-thickness (EABsun), providing excellent EMA performance.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.