牙周发育过程中成骨细胞分化过程中α-平滑肌肌动蛋白的定位。

IF 3.2 3区 生物学 Q3 CELL BIOLOGY Cell and Tissue Research Pub Date : 2024-11-23 DOI:10.1007/s00441-024-03940-4
Hiroaki Takebe, Hanaka Sato, Toshihide Mizoguchi, Akihiro Hosoya
{"title":"牙周发育过程中成骨细胞分化过程中α-平滑肌肌动蛋白的定位。","authors":"Hiroaki Takebe, Hanaka Sato, Toshihide Mizoguchi, Akihiro Hosoya","doi":"10.1007/s00441-024-03940-4","DOIUrl":null,"url":null,"abstract":"<p><p>α-Smooth muscle actin (α-SMA) is an actin isoform commonly found within vascular smooth muscle cells. Moreover, α-SMA-positive cells are localized in the dental follicle (DF). DF is derived from alveolar bone (AB), cementum, and periodontal ligament (PDL). Therefore, α-SMA-positive cells in the periodontal tissue are speculated to be a marker for mesenchymal stem cells during tooth development. In particular, the mechanism of osteoblast differentiation is not clear. This study demonstrated the fate of α-SMA-positive cells around the tooth germ immunohistochemically. First, α-SMA- and Runx2-positive localization at embryonic days (E) 13, E14, postnatal days (P) 9, and P15 was demonstrated. α-SMA- and Runx2-positive cells were detected in the upper part of the DF at P1. At P9 and P15, α-SMA-positive cells in the PDL were detected in the upper and lower parts. The positive reaction of Runx2 was also localized in the PDL. Then, the distribution of α-SMA-positive cell progeny at P9 and P15 were clarified using α-SMA-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (α-SMA/tomato) mice. It has known that Runx2-positive cells differentiate into osteoblasts. In this study, some Runx2 and α-SMA-positive cells were localized in the DF and PDL. The lineage-tracing analysis demonstrated that the α-SMA/tomato-positive cells expressing Runx2 or Osterix were detected on the AB surface at P15. α-SMA/tomato-positive cells expressing type I collagen were found in the AB matrix. These results indicate that the progeny of the α-SMA-positive cells in the DF could differentiate into osteogenic cells. In conclusion, α-SMA could be a potential marker of progenitor cells that differentiate into osteoblasts.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization of α-smooth muscle actin in osteoblast differentiation during periodontal development.\",\"authors\":\"Hiroaki Takebe, Hanaka Sato, Toshihide Mizoguchi, Akihiro Hosoya\",\"doi\":\"10.1007/s00441-024-03940-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>α-Smooth muscle actin (α-SMA) is an actin isoform commonly found within vascular smooth muscle cells. Moreover, α-SMA-positive cells are localized in the dental follicle (DF). DF is derived from alveolar bone (AB), cementum, and periodontal ligament (PDL). Therefore, α-SMA-positive cells in the periodontal tissue are speculated to be a marker for mesenchymal stem cells during tooth development. In particular, the mechanism of osteoblast differentiation is not clear. This study demonstrated the fate of α-SMA-positive cells around the tooth germ immunohistochemically. First, α-SMA- and Runx2-positive localization at embryonic days (E) 13, E14, postnatal days (P) 9, and P15 was demonstrated. α-SMA- and Runx2-positive cells were detected in the upper part of the DF at P1. At P9 and P15, α-SMA-positive cells in the PDL were detected in the upper and lower parts. The positive reaction of Runx2 was also localized in the PDL. Then, the distribution of α-SMA-positive cell progeny at P9 and P15 were clarified using α-SMA-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (α-SMA/tomato) mice. It has known that Runx2-positive cells differentiate into osteoblasts. In this study, some Runx2 and α-SMA-positive cells were localized in the DF and PDL. The lineage-tracing analysis demonstrated that the α-SMA/tomato-positive cells expressing Runx2 or Osterix were detected on the AB surface at P15. α-SMA/tomato-positive cells expressing type I collagen were found in the AB matrix. These results indicate that the progeny of the α-SMA-positive cells in the DF could differentiate into osteogenic cells. In conclusion, α-SMA could be a potential marker of progenitor cells that differentiate into osteoblasts.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-024-03940-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03940-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

α-平滑肌肌动蛋白(α-SMA)是血管平滑肌细胞中常见的肌动蛋白异构体。此外,α-SMA 阳性细胞位于牙槽骨(DF)中。DF 源自牙槽骨(AB)、骨水泥和牙周韧带(PDL)。因此,牙周组织中的α-SMA阳性细胞被推测为牙齿发育过程中间充质干细胞的标记。尤其是成骨细胞的分化机制尚不清楚。本研究通过免疫组织化学方法证明了牙胚周围α-SMA阳性细胞的命运。首先,α-SMA 和 Runx2 在胚胎第 13 天、第 14 天、出生后第 9 天和第 15 天呈阳性定位。在胚胎第 13 天、第 14 天、出生后第 9 天和第 15 天,α-SMA 和 Runx2 阳性细胞在 DF 上部被检测到。在 P9 和 P15,PDL 的上部和下部均检测到 α-SMA 阳性细胞。PDL中也出现了Runx2阳性反应。然后,利用α-SMA-CreERT2/ROSA26-loxP-stop-loxP-tdTomato(α-SMA/tomato)小鼠明确了P9和P15时α-SMA阳性细胞后代的分布。众所周知,Runx2阳性细胞可分化为成骨细胞。在本研究中,一些Runx2和α-SMA阳性细胞定位于DF和PDL。系谱追踪分析表明,P15时在AB表面检测到表达Runx2或Osterix的α-SMA/tomato阳性细胞,在AB基质中发现了表达I型胶原的α-SMA/tomato阳性细胞。这些结果表明,DF中α-SMA阳性细胞的后代可分化为成骨细胞。总之,α-SMA 可能是祖细胞分化成成骨细胞的潜在标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localization of α-smooth muscle actin in osteoblast differentiation during periodontal development.

α-Smooth muscle actin (α-SMA) is an actin isoform commonly found within vascular smooth muscle cells. Moreover, α-SMA-positive cells are localized in the dental follicle (DF). DF is derived from alveolar bone (AB), cementum, and periodontal ligament (PDL). Therefore, α-SMA-positive cells in the periodontal tissue are speculated to be a marker for mesenchymal stem cells during tooth development. In particular, the mechanism of osteoblast differentiation is not clear. This study demonstrated the fate of α-SMA-positive cells around the tooth germ immunohistochemically. First, α-SMA- and Runx2-positive localization at embryonic days (E) 13, E14, postnatal days (P) 9, and P15 was demonstrated. α-SMA- and Runx2-positive cells were detected in the upper part of the DF at P1. At P9 and P15, α-SMA-positive cells in the PDL were detected in the upper and lower parts. The positive reaction of Runx2 was also localized in the PDL. Then, the distribution of α-SMA-positive cell progeny at P9 and P15 were clarified using α-SMA-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (α-SMA/tomato) mice. It has known that Runx2-positive cells differentiate into osteoblasts. In this study, some Runx2 and α-SMA-positive cells were localized in the DF and PDL. The lineage-tracing analysis demonstrated that the α-SMA/tomato-positive cells expressing Runx2 or Osterix were detected on the AB surface at P15. α-SMA/tomato-positive cells expressing type I collagen were found in the AB matrix. These results indicate that the progeny of the α-SMA-positive cells in the DF could differentiate into osteogenic cells. In conclusion, α-SMA could be a potential marker of progenitor cells that differentiate into osteoblasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
期刊最新文献
Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus. CRISPR-based genetic screens in human pluripotent stem cells derived neurons and brain organoids. Enhanced cell survival in prepubertal testicular tissue cryopreserved with membrane lipids and antioxidants rich cryopreservation medium. Localization of α-smooth muscle actin in osteoblast differentiation during periodontal development. Mesonephric tubules expressing estrogen and androgen receptors remain in the rete ovarii of adult mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1