{"title":"用于治疗血友病关节炎的巨噬细胞膜包裹 miRNA 纳米递送系统。","authors":"Yufan Qian, Yetian Ma, Atanas Banchev, Weifeng Duan, Pingcheng Xu, Lingying Zhao, Miao Jiang, Ziqiang Yu, Feng Zhou, Jiong Jiong Guo","doi":"10.1016/j.jconrel.2024.11.034","DOIUrl":null,"url":null,"abstract":"<p><p>Hemophilic arthritis (HA) is one of the most pathologically altered joint diseases. Specifically, periodic spontaneous hemorrhage-induced hyperinflammation of the synovium and irreversible destruction of the cartilage are the main mechanisms that profoundly affect the behavioral functioning and quality of life of patients. In this study, we isolated and characterized platelet-rich plasma-derived exosomes (PRP-exo). We performed microRNA (miRNA) sequencing and bioinformatics analysis on these exosomes to identify the most abundant miRNA, miR-451a. Following this, we developed an M@ZIF-8@miR nanotherapeutic system that utilizes nanoscale zeolitic imidazolate framework (ZIF) as a carrier for miRNA delivery, encapsulated within M2 membranes to enhance its anti-inflammatory effects. In vitro and in vivo studies demonstrated that M@ZIF-8@miR significantly reduced pro-inflammatory cytokines, controlled synovial inflammation, and achieved potent therapeutic efficacy by reducing joint damage. We suggest that the ability of M@ZIF-8@miR nanocomposites to inhibit pro-inflammatory cytokines, enhance cellular uptake, and exhibit good endosomal escape properties makes them promising carriers for the efficient delivery of therapeutic nucleic acid drugs. This approach delays joint degeneration and provides a promising combinatorial strategy for HA treatment.</p>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophage membrane-encapsulated miRNA nanodelivery system for the treatment of hemophilic arthritis.\",\"authors\":\"Yufan Qian, Yetian Ma, Atanas Banchev, Weifeng Duan, Pingcheng Xu, Lingying Zhao, Miao Jiang, Ziqiang Yu, Feng Zhou, Jiong Jiong Guo\",\"doi\":\"10.1016/j.jconrel.2024.11.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemophilic arthritis (HA) is one of the most pathologically altered joint diseases. Specifically, periodic spontaneous hemorrhage-induced hyperinflammation of the synovium and irreversible destruction of the cartilage are the main mechanisms that profoundly affect the behavioral functioning and quality of life of patients. In this study, we isolated and characterized platelet-rich plasma-derived exosomes (PRP-exo). We performed microRNA (miRNA) sequencing and bioinformatics analysis on these exosomes to identify the most abundant miRNA, miR-451a. Following this, we developed an M@ZIF-8@miR nanotherapeutic system that utilizes nanoscale zeolitic imidazolate framework (ZIF) as a carrier for miRNA delivery, encapsulated within M2 membranes to enhance its anti-inflammatory effects. In vitro and in vivo studies demonstrated that M@ZIF-8@miR significantly reduced pro-inflammatory cytokines, controlled synovial inflammation, and achieved potent therapeutic efficacy by reducing joint damage. We suggest that the ability of M@ZIF-8@miR nanocomposites to inhibit pro-inflammatory cytokines, enhance cellular uptake, and exhibit good endosomal escape properties makes them promising carriers for the efficient delivery of therapeutic nucleic acid drugs. This approach delays joint degeneration and provides a promising combinatorial strategy for HA treatment.</p>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jconrel.2024.11.034\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2024.11.034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Macrophage membrane-encapsulated miRNA nanodelivery system for the treatment of hemophilic arthritis.
Hemophilic arthritis (HA) is one of the most pathologically altered joint diseases. Specifically, periodic spontaneous hemorrhage-induced hyperinflammation of the synovium and irreversible destruction of the cartilage are the main mechanisms that profoundly affect the behavioral functioning and quality of life of patients. In this study, we isolated and characterized platelet-rich plasma-derived exosomes (PRP-exo). We performed microRNA (miRNA) sequencing and bioinformatics analysis on these exosomes to identify the most abundant miRNA, miR-451a. Following this, we developed an M@ZIF-8@miR nanotherapeutic system that utilizes nanoscale zeolitic imidazolate framework (ZIF) as a carrier for miRNA delivery, encapsulated within M2 membranes to enhance its anti-inflammatory effects. In vitro and in vivo studies demonstrated that M@ZIF-8@miR significantly reduced pro-inflammatory cytokines, controlled synovial inflammation, and achieved potent therapeutic efficacy by reducing joint damage. We suggest that the ability of M@ZIF-8@miR nanocomposites to inhibit pro-inflammatory cytokines, enhance cellular uptake, and exhibit good endosomal escape properties makes them promising carriers for the efficient delivery of therapeutic nucleic acid drugs. This approach delays joint degeneration and provides a promising combinatorial strategy for HA treatment.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.