青蒿素激活sirtuin 3和维持线粒体稳态可防止双氯芬酸诱导的大鼠肾损伤。

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY Naunyn-Schmiedeberg's archives of pharmacology Pub Date : 2024-11-23 DOI:10.1007/s00210-024-03620-8
Doaa Hellal, Sarah Ragab Abd El-Khalik, Heba M Arakeep, Doaa A Radwan, Hend S Abo Safia, Eman A E Farrag
{"title":"青蒿素激活sirtuin 3和维持线粒体稳态可防止双氯芬酸诱导的大鼠肾损伤。","authors":"Doaa Hellal, Sarah Ragab Abd El-Khalik, Heba M Arakeep, Doaa A Radwan, Hend S Abo Safia, Eman A E Farrag","doi":"10.1007/s00210-024-03620-8","DOIUrl":null,"url":null,"abstract":"<p><p>Nonsteroidal anti-inflammatory drug (NSAID)-induced kidney injury is one of the most common causes of renal failure. The exact pathogenesis of NSAID induced kidney injury is not fully known and the treatment is still challenging. Artemisinin (ART) gains more attention by its potent biological activities in addition to its antimalarial effect. In our research, we evaluated the preventive and therapeutic effects of ART in Diclofenac (DIC) induced kidney injury through its effect on mitochondria and regulation of sirtuin 3 (SIRT3). Thirty adult male Sprague Dawley rats were divided into five groups: control, ART, DIC, DIC + ART prophylactic, and DIC followed + ART therapeutic groups. At the end of the study, animals were scarified and the following parameters were evaluated: serum urea and creatinine, renal malondialdehyde (MDA), superoxide dismutase (SOD) and nitrate. SIRT3 was detected by western blotting and real-time PCR. Mitochondrial related markers (PGC-1α, Drp1, and mitochondrial ATP) were detected by immunoassay. Caspase-3 and LC3 II expression in kidney tissues were demonstrated by immune-histochemical staining. The kidney specimens were stained for H&E and PAS special stain. Electron microscopy was done to detect mitochondrial morphology. ART improved renal function test, oxidative stress, SIRT3 level, mitochondrial function, LC3 II expression and decrease caspase-3. Histopathological examination confirmed ART alleviation as determined by light or electron microscopy. ART can modulate biochemical and pathological changes in DIC-induced kidney injury and can be considered a new possible therapeutic approach for DIC-induced kidney injury through its effect on SIR3 and maintenance of mitochondrial homeostasis.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of sirtuin 3 and maintenance of mitochondrial homeostasis by artemisinin protect against diclofenac-induced kidney injury in rats.\",\"authors\":\"Doaa Hellal, Sarah Ragab Abd El-Khalik, Heba M Arakeep, Doaa A Radwan, Hend S Abo Safia, Eman A E Farrag\",\"doi\":\"10.1007/s00210-024-03620-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonsteroidal anti-inflammatory drug (NSAID)-induced kidney injury is one of the most common causes of renal failure. The exact pathogenesis of NSAID induced kidney injury is not fully known and the treatment is still challenging. Artemisinin (ART) gains more attention by its potent biological activities in addition to its antimalarial effect. In our research, we evaluated the preventive and therapeutic effects of ART in Diclofenac (DIC) induced kidney injury through its effect on mitochondria and regulation of sirtuin 3 (SIRT3). Thirty adult male Sprague Dawley rats were divided into five groups: control, ART, DIC, DIC + ART prophylactic, and DIC followed + ART therapeutic groups. At the end of the study, animals were scarified and the following parameters were evaluated: serum urea and creatinine, renal malondialdehyde (MDA), superoxide dismutase (SOD) and nitrate. SIRT3 was detected by western blotting and real-time PCR. Mitochondrial related markers (PGC-1α, Drp1, and mitochondrial ATP) were detected by immunoassay. Caspase-3 and LC3 II expression in kidney tissues were demonstrated by immune-histochemical staining. The kidney specimens were stained for H&E and PAS special stain. Electron microscopy was done to detect mitochondrial morphology. ART improved renal function test, oxidative stress, SIRT3 level, mitochondrial function, LC3 II expression and decrease caspase-3. Histopathological examination confirmed ART alleviation as determined by light or electron microscopy. ART can modulate biochemical and pathological changes in DIC-induced kidney injury and can be considered a new possible therapeutic approach for DIC-induced kidney injury through its effect on SIR3 and maintenance of mitochondrial homeostasis.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03620-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03620-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

非甾体抗炎药(NSAID)引起的肾损伤是肾衰竭最常见的原因之一。非甾体抗炎药诱发肾损伤的确切发病机制尚不完全清楚,治疗方法也仍具有挑战性。青蒿素(ART)除了具有抗疟作用外,还具有强大的生物活性,因此受到越来越多的关注。在我们的研究中,我们通过青蒿素对线粒体的影响和对sirtuin 3(SIRT3)的调控,评估了青蒿素对双氯芬酸(DIC)诱导的肾损伤的预防和治疗作用。30 只成年雄性 Sprague Dawley 大鼠被分为五组:对照组、ART 组、DIC 组、DIC + ART 预防组和 DIC 后 + ART 治疗组。研究结束后,对动物进行瘢痕处理,并评估以下参数:血清尿素和肌酐、肾丙二醛(MDA)、超氧化物歧化酶(SOD)和硝酸盐。通过西部印迹和实时 PCR 检测 SIRT3。线粒体相关标记物(PGC-1α、Drp1 和线粒体 ATP)通过免疫测定进行检测。免疫组织化学染色法显示了肾组织中 Caspase-3 和 LC3 II 的表达。肾脏标本经 H&E 和 PAS 特殊染色。电子显微镜检测线粒体形态。抗逆转录病毒疗法改善了肾功能检测、氧化应激、SIRT3 水平、线粒体功能、LC3 II 表达,并降低了 caspase-3。组织病理学检查证实,通过光镜或电子显微镜检测,抗逆转录病毒疗法可减轻病症。ART可调节DIC诱导的肾损伤的生化和病理变化,通过其对SIR3的影响和线粒体平衡的维持,可被视为一种治疗DIC诱导的肾损伤的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activation of sirtuin 3 and maintenance of mitochondrial homeostasis by artemisinin protect against diclofenac-induced kidney injury in rats.

Nonsteroidal anti-inflammatory drug (NSAID)-induced kidney injury is one of the most common causes of renal failure. The exact pathogenesis of NSAID induced kidney injury is not fully known and the treatment is still challenging. Artemisinin (ART) gains more attention by its potent biological activities in addition to its antimalarial effect. In our research, we evaluated the preventive and therapeutic effects of ART in Diclofenac (DIC) induced kidney injury through its effect on mitochondria and regulation of sirtuin 3 (SIRT3). Thirty adult male Sprague Dawley rats were divided into five groups: control, ART, DIC, DIC + ART prophylactic, and DIC followed + ART therapeutic groups. At the end of the study, animals were scarified and the following parameters were evaluated: serum urea and creatinine, renal malondialdehyde (MDA), superoxide dismutase (SOD) and nitrate. SIRT3 was detected by western blotting and real-time PCR. Mitochondrial related markers (PGC-1α, Drp1, and mitochondrial ATP) were detected by immunoassay. Caspase-3 and LC3 II expression in kidney tissues were demonstrated by immune-histochemical staining. The kidney specimens were stained for H&E and PAS special stain. Electron microscopy was done to detect mitochondrial morphology. ART improved renal function test, oxidative stress, SIRT3 level, mitochondrial function, LC3 II expression and decrease caspase-3. Histopathological examination confirmed ART alleviation as determined by light or electron microscopy. ART can modulate biochemical and pathological changes in DIC-induced kidney injury and can be considered a new possible therapeutic approach for DIC-induced kidney injury through its effect on SIR3 and maintenance of mitochondrial homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
期刊最新文献
Correction: Synthesis, characterization, and practical applications of perovskite quantum dots: recent update. Advanced glycosylation end products promote the progression of CKD-MBD in rats, and its natural inhibitor, quercetin, mitigates disease progression. Echinacoside activates Nrf2/PPARγ signaling pathway to modulate mitochondrial fusion-fission balance to ameliorate ox-LDL-induced dysfunction of coronary artery endothelial cells. Enhancement of anti-cancer compounds in fungal elicited-Oldenlandia umbellata culture. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1