热处理益生菌株对小鼠生物膜形成、病毒相关基因转录和UTI预防的影响

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Probiotics and Antimicrobial Proteins Pub Date : 2024-11-23 DOI:10.1007/s12602-024-10399-w
Yueh-Ying Chen, Zhen-Shu Liu, Bo-Yuan Chen, Hon-Man-Herman Tam, Wei-Yau Shia, Hsin-Hsuan Yu, Po-Wen Chen
{"title":"热处理益生菌株对小鼠生物膜形成、病毒相关基因转录和UTI预防的影响","authors":"Yueh-Ying Chen, Zhen-Shu Liu, Bo-Yuan Chen, Hon-Man-Herman Tam, Wei-Yau Shia, Hsin-Hsuan Yu, Po-Wen Chen","doi":"10.1007/s12602-024-10399-w","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary tract infections (UTIs) pose a substantial healthcare challenge, exacerbated by the biofilm-forming abilities and antibiotic resistance of uropathogens. This study investigated the inhibition of biofilm formation (anti-biofilm) and dispersion of pre-established biofilm properties of 18 heat-killed probiotics and their supernatants against four antibiotic-resistant uropathogens: UPEC, Klebsiella pneumoniae (KP), Methicillin-resistant Escherichia coli (MREC), and Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Supernatants from 14 probiotic strains significantly (P < 0.001) inhibited UPEC biofilm formation, reducing it by 20-80%, and also showed promise in removing existing biofilms by 10-60% (P < 0.001). Eight strains significantly (P < 0.05 to < 0.001) inhibited MREC biofilm formation, with four strains achieving 50-80% dispersion. Seventeen strains of heat-killed probiotics directly inhibited UPEC biofilm formation by 10-60% (P < 0.05 to < 0.001), but were less effective against MREC and MRSP (10-50% reduction; P < 0.05 to < 0.001) and had limited impact on KP (10% reduction; P < 0.05 to < 0.001). Notably, heat-killed probiotic like LGA, LGC, LGD, TP-8, and TP-4 showed the most significant inhibitory and dispersion of biofilm activity. RT-qPCR analysis further revealed these inactivated probiotics downregulated genes associated with pili and biofilm formation (fimA, csgA) and upregulated genes linked to quorum sensing (luxS, qseBC, sdiA). Therefore, these findings suggest that paraprobiotic treatment could inhibit the formation of pili and biofilms and promote biofilm dispersion. In an animal model, mice given paraprobiotic formulations I (16 strains) and II (a specific mixture) for 2 weeks showed reduced urinary bacterial load (P < 0.05). Paraprobiotic I notably reduced morbidity from bacteriuria (> 10<sup>5</sup> CFU/ml) by 5 to 30% within the first 5 days post-infection compared to placebo. These findings highlight the potential of specific heat-killed probiotics in combating biofilms and preventing UTIs.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Heat-Killed Probiotic Strains on Biofilm Formation, Transcription of Virulence-Associated Genes, and Prevention of UTIs in Mice.\",\"authors\":\"Yueh-Ying Chen, Zhen-Shu Liu, Bo-Yuan Chen, Hon-Man-Herman Tam, Wei-Yau Shia, Hsin-Hsuan Yu, Po-Wen Chen\",\"doi\":\"10.1007/s12602-024-10399-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urinary tract infections (UTIs) pose a substantial healthcare challenge, exacerbated by the biofilm-forming abilities and antibiotic resistance of uropathogens. This study investigated the inhibition of biofilm formation (anti-biofilm) and dispersion of pre-established biofilm properties of 18 heat-killed probiotics and their supernatants against four antibiotic-resistant uropathogens: UPEC, Klebsiella pneumoniae (KP), Methicillin-resistant Escherichia coli (MREC), and Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Supernatants from 14 probiotic strains significantly (P < 0.001) inhibited UPEC biofilm formation, reducing it by 20-80%, and also showed promise in removing existing biofilms by 10-60% (P < 0.001). Eight strains significantly (P < 0.05 to < 0.001) inhibited MREC biofilm formation, with four strains achieving 50-80% dispersion. Seventeen strains of heat-killed probiotics directly inhibited UPEC biofilm formation by 10-60% (P < 0.05 to < 0.001), but were less effective against MREC and MRSP (10-50% reduction; P < 0.05 to < 0.001) and had limited impact on KP (10% reduction; P < 0.05 to < 0.001). Notably, heat-killed probiotic like LGA, LGC, LGD, TP-8, and TP-4 showed the most significant inhibitory and dispersion of biofilm activity. RT-qPCR analysis further revealed these inactivated probiotics downregulated genes associated with pili and biofilm formation (fimA, csgA) and upregulated genes linked to quorum sensing (luxS, qseBC, sdiA). Therefore, these findings suggest that paraprobiotic treatment could inhibit the formation of pili and biofilms and promote biofilm dispersion. In an animal model, mice given paraprobiotic formulations I (16 strains) and II (a specific mixture) for 2 weeks showed reduced urinary bacterial load (P < 0.05). Paraprobiotic I notably reduced morbidity from bacteriuria (> 10<sup>5</sup> CFU/ml) by 5 to 30% within the first 5 days post-infection compared to placebo. These findings highlight the potential of specific heat-killed probiotics in combating biofilms and preventing UTIs.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10399-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10399-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尿路感染(UTI)给医疗保健带来了巨大挑战,而尿路病原体的生物膜形成能力和抗生素耐药性又加剧了这一挑战。本研究调查了 18 种热杀灭益生菌及其上清液对四种抗生素耐药尿路病原体的生物膜形成抑制(抗生物膜)和预先建立的生物膜特性的分散作用:UPEC、肺炎克雷伯菌(KP)、耐甲氧西林大肠杆菌(MREC)和耐甲氧西林假中间葡萄球菌(MRSP)。与安慰剂相比,14 种益生菌株的上清液在感染后的头 5 天内显著降低了 5% 至 30% 的菌落总数(P 105 CFU/ml)。这些发现凸显了特定热杀死益生菌在抗生物膜和预防UTI方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Heat-Killed Probiotic Strains on Biofilm Formation, Transcription of Virulence-Associated Genes, and Prevention of UTIs in Mice.

Urinary tract infections (UTIs) pose a substantial healthcare challenge, exacerbated by the biofilm-forming abilities and antibiotic resistance of uropathogens. This study investigated the inhibition of biofilm formation (anti-biofilm) and dispersion of pre-established biofilm properties of 18 heat-killed probiotics and their supernatants against four antibiotic-resistant uropathogens: UPEC, Klebsiella pneumoniae (KP), Methicillin-resistant Escherichia coli (MREC), and Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Supernatants from 14 probiotic strains significantly (P < 0.001) inhibited UPEC biofilm formation, reducing it by 20-80%, and also showed promise in removing existing biofilms by 10-60% (P < 0.001). Eight strains significantly (P < 0.05 to < 0.001) inhibited MREC biofilm formation, with four strains achieving 50-80% dispersion. Seventeen strains of heat-killed probiotics directly inhibited UPEC biofilm formation by 10-60% (P < 0.05 to < 0.001), but were less effective against MREC and MRSP (10-50% reduction; P < 0.05 to < 0.001) and had limited impact on KP (10% reduction; P < 0.05 to < 0.001). Notably, heat-killed probiotic like LGA, LGC, LGD, TP-8, and TP-4 showed the most significant inhibitory and dispersion of biofilm activity. RT-qPCR analysis further revealed these inactivated probiotics downregulated genes associated with pili and biofilm formation (fimA, csgA) and upregulated genes linked to quorum sensing (luxS, qseBC, sdiA). Therefore, these findings suggest that paraprobiotic treatment could inhibit the formation of pili and biofilms and promote biofilm dispersion. In an animal model, mice given paraprobiotic formulations I (16 strains) and II (a specific mixture) for 2 weeks showed reduced urinary bacterial load (P < 0.05). Paraprobiotic I notably reduced morbidity from bacteriuria (> 105 CFU/ml) by 5 to 30% within the first 5 days post-infection compared to placebo. These findings highlight the potential of specific heat-killed probiotics in combating biofilms and preventing UTIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
期刊最新文献
The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome. Lactobacillus rhamnosus GG Regulates Host IFN-I Through the RIG-I Signalling Pathway to Inhibit Herpes Simplex Virus Type 2 Infection. Lactiplantibacillus plantarum ELF051 Alleviates Antibiotic-Associated Diarrhea by Regulating Intestinal Inflammation and Gut Microbiota. A Two Bacteriocinogenic Ligilactobacillus Strain Association Inhibits Growth, Adhesion, and Invasion of Salmonella in a Simulated Chicken Gut Environment. Gum Arabic/Chitosan Coacervates for Encapsulation and Protection of Lacticaseibacillus rhamnosus in Storage and Gastrointestinal Environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1