{"title":"SARS-CoV-2 使小鼠肺泡巨噬细胞重编程,从而抑制流感。","authors":"Alexandra Tabachnikova, Akiko Iwasaki","doi":"10.1016/j.it.2024.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Innate immune cells that are epigenetically reprogrammed by infection can modify host responses to subsequent infections. Lercher et al. have identified epigenetic reprogramming of murine airway-resident macrophages following recovery from SARS-CoV-2 infection, conferring protection from pathology and lethality following secondary influenza A virus (IAV) challenge without reducing viral titers.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 reprograms murine alveolar macrophages to dampen flu.\",\"authors\":\"Alexandra Tabachnikova, Akiko Iwasaki\",\"doi\":\"10.1016/j.it.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innate immune cells that are epigenetically reprogrammed by infection can modify host responses to subsequent infections. Lercher et al. have identified epigenetic reprogramming of murine airway-resident macrophages following recovery from SARS-CoV-2 infection, conferring protection from pathology and lethality following secondary influenza A virus (IAV) challenge without reducing viral titers.</p>\",\"PeriodicalId\":54412,\"journal\":{\"name\":\"Trends in Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.it.2024.11.002\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.it.2024.11.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
SARS-CoV-2 reprograms murine alveolar macrophages to dampen flu.
Innate immune cells that are epigenetically reprogrammed by infection can modify host responses to subsequent infections. Lercher et al. have identified epigenetic reprogramming of murine airway-resident macrophages following recovery from SARS-CoV-2 infection, conferring protection from pathology and lethality following secondary influenza A virus (IAV) challenge without reducing viral titers.
期刊介绍:
Trends in Immunology serves as a vital platform for tracking advancements across various areas of immunology, offering concise reviews and hypothesis-driven viewpoints in each issue. With additional sections providing comprehensive coverage, the journal offers a holistic view of immunology. This broad perspective makes it an invaluable resource for researchers, educators, and students, facilitating the connection between basic and clinical immunology. Recognized as one of the top monthly review journals in its field, Trends in Immunology is highly regarded by the scientific community.