DDKG:用于非脱位股骨颈骨折定位和诊断的双领域知识指导策略

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2024-11-19 DOI:10.1016/j.media.2024.103393
Jing Yang , Lianxin Wang , Chen Lin , Jiacheng Wang , Liansheng Wang
{"title":"DDKG:用于非脱位股骨颈骨折定位和诊断的双领域知识指导策略","authors":"Jing Yang ,&nbsp;Lianxin Wang ,&nbsp;Chen Lin ,&nbsp;Jiacheng Wang ,&nbsp;Liansheng Wang","doi":"10.1016/j.media.2024.103393","DOIUrl":null,"url":null,"abstract":"<div><div>X-ray is the primary tool for diagnosing fractures, crucial for determining their type, location, and severity. However, non-displaced femoral neck fractures (ND-FNF) can pose challenges in identification due to subtle cracks and complex anatomical structures. Most deep learning-based methods for diagnosing ND-FNF rely on cropped images, necessitating manual annotation of the hip location, which increases annotation costs. To address this challenge, we propose Dual Domain Knowledge Guidance (DDKG), which harnesses spatial and semantic domain knowledge to guide the model in acquiring robust representations of ND-FNF across the whole X-ray image. Specifically, DDKG comprises two key modules: the Spatial Aware Module (SAM) and the Semantic Coordination Module (SCM). SAM employs limited positional supervision to guide the model in focusing on the hip joint region and reducing background interference. SCM integrates information from radiological reports, utilizes prior knowledge from large language models to extract critical information related to ND-FNF, and guides the model to learn relevant visual representations. During inference, the model only requires the whole X-ray image for accurate diagnosis without additional information. The model was validated on datasets from four different centers, showing consistent accuracy and robustness. Codes and models are available at <span><span>https://github.com/Yjing07/DDKG</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"100 ","pages":"Article 103393"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDKG: A Dual Domain Knowledge Guidance strategy for localization and diagnosis of non-displaced femoral neck fractures\",\"authors\":\"Jing Yang ,&nbsp;Lianxin Wang ,&nbsp;Chen Lin ,&nbsp;Jiacheng Wang ,&nbsp;Liansheng Wang\",\"doi\":\"10.1016/j.media.2024.103393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>X-ray is the primary tool for diagnosing fractures, crucial for determining their type, location, and severity. However, non-displaced femoral neck fractures (ND-FNF) can pose challenges in identification due to subtle cracks and complex anatomical structures. Most deep learning-based methods for diagnosing ND-FNF rely on cropped images, necessitating manual annotation of the hip location, which increases annotation costs. To address this challenge, we propose Dual Domain Knowledge Guidance (DDKG), which harnesses spatial and semantic domain knowledge to guide the model in acquiring robust representations of ND-FNF across the whole X-ray image. Specifically, DDKG comprises two key modules: the Spatial Aware Module (SAM) and the Semantic Coordination Module (SCM). SAM employs limited positional supervision to guide the model in focusing on the hip joint region and reducing background interference. SCM integrates information from radiological reports, utilizes prior knowledge from large language models to extract critical information related to ND-FNF, and guides the model to learn relevant visual representations. During inference, the model only requires the whole X-ray image for accurate diagnosis without additional information. The model was validated on datasets from four different centers, showing consistent accuracy and robustness. Codes and models are available at <span><span>https://github.com/Yjing07/DDKG</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"100 \",\"pages\":\"Article 103393\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841524003189\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524003189","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

X 射线是诊断骨折的主要工具,对于确定骨折的类型、位置和严重程度至关重要。然而,由于存在细微的裂缝和复杂的解剖结构,非移位股骨颈骨折(ND-FNF)的识别面临挑战。大多数基于深度学习的 ND-FNF 诊断方法都依赖于裁剪图像,需要人工标注髋关节位置,这增加了标注成本。为了应对这一挑战,我们提出了双领域知识指导(DDKG),利用空间和语义领域知识指导模型在整个 X 光图像中获取 ND-FNF 的稳健表示。具体来说,DDKG 包括两个关键模块:空间感知模块(SAM)和语义协调模块(SCM)。空间感知模块采用有限的位置监督来引导模型聚焦于髋关节区域并减少背景干扰。SCM 整合了放射报告中的信息,利用大型语言模型中的先验知识提取与 ND-FNF 相关的关键信息,并引导模型学习相关的视觉表征。在推理过程中,该模型只需要整个 X 光图像就能准确诊断,无需额外信息。该模型在四个不同中心的数据集上进行了验证,显示出一致的准确性和鲁棒性。代码和模型可在 https://github.com/Yjing07/DDKG 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DDKG: A Dual Domain Knowledge Guidance strategy for localization and diagnosis of non-displaced femoral neck fractures
X-ray is the primary tool for diagnosing fractures, crucial for determining their type, location, and severity. However, non-displaced femoral neck fractures (ND-FNF) can pose challenges in identification due to subtle cracks and complex anatomical structures. Most deep learning-based methods for diagnosing ND-FNF rely on cropped images, necessitating manual annotation of the hip location, which increases annotation costs. To address this challenge, we propose Dual Domain Knowledge Guidance (DDKG), which harnesses spatial and semantic domain knowledge to guide the model in acquiring robust representations of ND-FNF across the whole X-ray image. Specifically, DDKG comprises two key modules: the Spatial Aware Module (SAM) and the Semantic Coordination Module (SCM). SAM employs limited positional supervision to guide the model in focusing on the hip joint region and reducing background interference. SCM integrates information from radiological reports, utilizes prior knowledge from large language models to extract critical information related to ND-FNF, and guides the model to learn relevant visual representations. During inference, the model only requires the whole X-ray image for accurate diagnosis without additional information. The model was validated on datasets from four different centers, showing consistent accuracy and robustness. Codes and models are available at https://github.com/Yjing07/DDKG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. SAF-IS: A spatial annotation free framework for instance segmentation of surgical tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1