Soyun Joo, Uichang Jeong, Chaewon Gong, Seungbum Hong
{"title":"架起原子力显微镜机械分析与电学分析的桥梁:进展、技术与应用","authors":"Soyun Joo, Uichang Jeong, Chaewon Gong, Seungbum Hong","doi":"10.1021/accountsmr.4c00268","DOIUrl":null,"url":null,"abstract":"Microscopy has long expanded humanity’s understanding of the microscopic world, transcending limitations of the naked eye. The atomic force microscope (AFM), in particular, marks a major advancement in this field, enabling nanoscale investigations of materials through direct physical probing of their surface. Unlike traditional microscopes that use light or electrons, AFM’s unique methodology allows for both imaging on the atomic scale and precise manipulation of a material’s mechanical, electrical, and chemical properties. A key advantage also lies in its capacity for multimodal analysis, where multiple properties can be simultaneously measured to provide comprehensive insights into material behavior.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"1 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Mechanical and Electrical Analyses in AFM: Advances, Techniques, and Applications\",\"authors\":\"Soyun Joo, Uichang Jeong, Chaewon Gong, Seungbum Hong\",\"doi\":\"10.1021/accountsmr.4c00268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microscopy has long expanded humanity’s understanding of the microscopic world, transcending limitations of the naked eye. The atomic force microscope (AFM), in particular, marks a major advancement in this field, enabling nanoscale investigations of materials through direct physical probing of their surface. Unlike traditional microscopes that use light or electrons, AFM’s unique methodology allows for both imaging on the atomic scale and precise manipulation of a material’s mechanical, electrical, and chemical properties. A key advantage also lies in its capacity for multimodal analysis, where multiple properties can be simultaneously measured to provide comprehensive insights into material behavior.\",\"PeriodicalId\":72040,\"journal\":{\"name\":\"Accounts of materials research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of materials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/accountsmr.4c00268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridging Mechanical and Electrical Analyses in AFM: Advances, Techniques, and Applications
Microscopy has long expanded humanity’s understanding of the microscopic world, transcending limitations of the naked eye. The atomic force microscope (AFM), in particular, marks a major advancement in this field, enabling nanoscale investigations of materials through direct physical probing of their surface. Unlike traditional microscopes that use light or electrons, AFM’s unique methodology allows for both imaging on the atomic scale and precise manipulation of a material’s mechanical, electrical, and chemical properties. A key advantage also lies in its capacity for multimodal analysis, where multiple properties can be simultaneously measured to provide comprehensive insights into material behavior.