Yao Tang, Jonathan J. Fortney and Ruth Murray-Clay
{"title":"评估早期沸腾背景下的核心动力质量损失:海王星以下星群的最小长寿命质量损失","authors":"Yao Tang, Jonathan J. Fortney and Ruth Murray-Clay","doi":"10.3847/1538-4357/ad8567","DOIUrl":null,"url":null,"abstract":"We develop a Python-based state-of-the-art sub-Neptune evolution model that incorporates both the post-formation boil-off at young ages ≤1 Myr and long-lived core-powered mass loss (∼Gyr) from interior cooling. We investigate the roles of initial H/He entropy, core luminosity, energy advection, radiative atmospheric structure, and the transition to an X-ray- and ultraviolet-driven mass-loss phase, with an eye on relevant timescales for planetary mass loss and thermal evolution. With particular attention to the re-equilibration process of the H/He envelope, including the energy sources that fuel the hydrodynamic wind, and energy transport timescales, we find that boil-off and core-powered escape are primarily driven by stellar bolometric radiation. We further find that both boil-off and core-powered escape are decoupled from the thermal evolution. We show that, with a boil-off phase that accounts for the initial H/He mass fraction and initial entropy, post-boil-off core-powered escape has an insignificant influence on the demographics of small planets, as it is only able to remove at most 0.1% of the H/He mass fraction. Our numerical results are directly compared to previous work on analytical core-powered mass-loss modeling for individual evolutionary trajectories and populations of small planets. We examine a number of assumptions made in previous studies that cause significant differences compared to our findings. We find that boil-off, though able to completely strip the gaseous envelope from a highly irradiated (F ≥ 100 F⊕) planet that has a low-mass core (Mc ≤ 4 M⊕), cannot by itself form a pronounced radius gap as is seen in the observed population.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Core-powered Mass Loss in the Context of Early Boil-off: Minimal Long-lived Mass Loss for the Sub-Neptune Population\",\"authors\":\"Yao Tang, Jonathan J. Fortney and Ruth Murray-Clay\",\"doi\":\"10.3847/1538-4357/ad8567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a Python-based state-of-the-art sub-Neptune evolution model that incorporates both the post-formation boil-off at young ages ≤1 Myr and long-lived core-powered mass loss (∼Gyr) from interior cooling. We investigate the roles of initial H/He entropy, core luminosity, energy advection, radiative atmospheric structure, and the transition to an X-ray- and ultraviolet-driven mass-loss phase, with an eye on relevant timescales for planetary mass loss and thermal evolution. With particular attention to the re-equilibration process of the H/He envelope, including the energy sources that fuel the hydrodynamic wind, and energy transport timescales, we find that boil-off and core-powered escape are primarily driven by stellar bolometric radiation. We further find that both boil-off and core-powered escape are decoupled from the thermal evolution. We show that, with a boil-off phase that accounts for the initial H/He mass fraction and initial entropy, post-boil-off core-powered escape has an insignificant influence on the demographics of small planets, as it is only able to remove at most 0.1% of the H/He mass fraction. Our numerical results are directly compared to previous work on analytical core-powered mass-loss modeling for individual evolutionary trajectories and populations of small planets. We examine a number of assumptions made in previous studies that cause significant differences compared to our findings. We find that boil-off, though able to completely strip the gaseous envelope from a highly irradiated (F ≥ 100 F⊕) planet that has a low-mass core (Mc ≤ 4 M⊕), cannot by itself form a pronounced radius gap as is seen in the observed population.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad8567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad8567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing Core-powered Mass Loss in the Context of Early Boil-off: Minimal Long-lived Mass Loss for the Sub-Neptune Population
We develop a Python-based state-of-the-art sub-Neptune evolution model that incorporates both the post-formation boil-off at young ages ≤1 Myr and long-lived core-powered mass loss (∼Gyr) from interior cooling. We investigate the roles of initial H/He entropy, core luminosity, energy advection, radiative atmospheric structure, and the transition to an X-ray- and ultraviolet-driven mass-loss phase, with an eye on relevant timescales for planetary mass loss and thermal evolution. With particular attention to the re-equilibration process of the H/He envelope, including the energy sources that fuel the hydrodynamic wind, and energy transport timescales, we find that boil-off and core-powered escape are primarily driven by stellar bolometric radiation. We further find that both boil-off and core-powered escape are decoupled from the thermal evolution. We show that, with a boil-off phase that accounts for the initial H/He mass fraction and initial entropy, post-boil-off core-powered escape has an insignificant influence on the demographics of small planets, as it is only able to remove at most 0.1% of the H/He mass fraction. Our numerical results are directly compared to previous work on analytical core-powered mass-loss modeling for individual evolutionary trajectories and populations of small planets. We examine a number of assumptions made in previous studies that cause significant differences compared to our findings. We find that boil-off, though able to completely strip the gaseous envelope from a highly irradiated (F ≥ 100 F⊕) planet that has a low-mass core (Mc ≤ 4 M⊕), cannot by itself form a pronounced radius gap as is seen in the observed population.