快速旋转的太阳型恒星上出现的低纬度磁通量

Emre Işık, Sami K. Solanki, Robert H. Cameron and Alexander I. Shapiro
{"title":"快速旋转的太阳型恒星上出现的低纬度磁通量","authors":"Emre Işık, Sami K. Solanki, Robert H. Cameron and Alexander I. Shapiro","doi":"10.3847/1538-4357/ad8881","DOIUrl":null,"url":null,"abstract":"Besides a dense coverage of their high latitudes by starspots, rapidly rotating cool stars also display low-latitude spots in Doppler images, although generally with lower coverage. In contrast, flux emergence models of fast-rotating stars predict strong poleward deflection of radially rising magnetic flux as the Coriolis effect dominates over buoyancy, leaving a spot-free band around the equator. To resolve this discrepancy, we consider a flux tube near the base of the convection zone in a solar-type star rotating 8 times faster than the Sun, assuming field intensification by weak-tube explosions. For the intensification to continue into the buoyancy-dominated regime, the upper convection zone must have a significantly steeper temperature gradient than in the Sun by a factor that is comparable with that found in 3D simulations of rotating convection. Within the hypothesis that stellar active regions stem from the base of the convection zone, flux emergence between the equator and 20° latitudes requires highly supercritical field strengths of up to 500 kG in rapidly rotating stars. These field strengths require explosions of 100 kG tubes within the convection zone, compatible with reasonable values of the superadiabatic temperature gradient associated with the more rapid rotation.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-latitude Magnetic Flux Emergence on Rapidly Rotating Solar-type Stars\",\"authors\":\"Emre Işık, Sami K. Solanki, Robert H. Cameron and Alexander I. Shapiro\",\"doi\":\"10.3847/1538-4357/ad8881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Besides a dense coverage of their high latitudes by starspots, rapidly rotating cool stars also display low-latitude spots in Doppler images, although generally with lower coverage. In contrast, flux emergence models of fast-rotating stars predict strong poleward deflection of radially rising magnetic flux as the Coriolis effect dominates over buoyancy, leaving a spot-free band around the equator. To resolve this discrepancy, we consider a flux tube near the base of the convection zone in a solar-type star rotating 8 times faster than the Sun, assuming field intensification by weak-tube explosions. For the intensification to continue into the buoyancy-dominated regime, the upper convection zone must have a significantly steeper temperature gradient than in the Sun by a factor that is comparable with that found in 3D simulations of rotating convection. Within the hypothesis that stellar active regions stem from the base of the convection zone, flux emergence between the equator and 20° latitudes requires highly supercritical field strengths of up to 500 kG in rapidly rotating stars. These field strengths require explosions of 100 kG tubes within the convection zone, compatible with reasonable values of the superadiabatic temperature gradient associated with the more rapid rotation.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad8881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad8881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

除了星斑密集覆盖高纬度地区外,快速旋转的冷星也会在多普勒图像中显示低纬度地区的星斑,不过覆盖率一般较低。与此相反,快速旋转恒星的磁通量涌现模型预测,由于科里奥利效应超过了浮力,径向上升的磁通量会发生强烈的极向偏转,从而在赤道周围留下一个无星斑带。为了解决这一差异,我们考虑了太阳型恒星对流区底部附近的磁通量管,其旋转速度是太阳的 8 倍,假定磁场通过弱管爆炸而增强。要使强化持续到浮力主导机制,上部对流区的温度梯度必须比太阳陡峭得多,其系数与旋转对流三维模拟中发现的系数相当。根据恒星活动区源自对流区底部的假设,在赤道和 20° 纬度之间出现的通量需要快速旋转恒星中高达 500 kG 的高度超临界场强。这些场强要求对流区内有 100 kG 的爆炸管,这与与更快速旋转相关的超绝热温度梯度的合理值相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-latitude Magnetic Flux Emergence on Rapidly Rotating Solar-type Stars
Besides a dense coverage of their high latitudes by starspots, rapidly rotating cool stars also display low-latitude spots in Doppler images, although generally with lower coverage. In contrast, flux emergence models of fast-rotating stars predict strong poleward deflection of radially rising magnetic flux as the Coriolis effect dominates over buoyancy, leaving a spot-free band around the equator. To resolve this discrepancy, we consider a flux tube near the base of the convection zone in a solar-type star rotating 8 times faster than the Sun, assuming field intensification by weak-tube explosions. For the intensification to continue into the buoyancy-dominated regime, the upper convection zone must have a significantly steeper temperature gradient than in the Sun by a factor that is comparable with that found in 3D simulations of rotating convection. Within the hypothesis that stellar active regions stem from the base of the convection zone, flux emergence between the equator and 20° latitudes requires highly supercritical field strengths of up to 500 kG in rapidly rotating stars. These field strengths require explosions of 100 kG tubes within the convection zone, compatible with reasonable values of the superadiabatic temperature gradient associated with the more rapid rotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiwavelength Campaign Observations of a Young Solar-type Star, EK Draconis. II. Understanding Prominence Eruption through Data-driven Modeling and Observed Magnetic Environment Compact Binary Merger Rate with Modified Gravity in Dark Matter Spikes Chemical Pathways of SO2 with Hydrogen Atoms on Interstellar Ice Analogues The Magnetic Field in Quiescent Star-forming Filament G16.96+0.27 Chemistry in the GG Tau A Disk: Constraints from H2D+, N2H+, and DCO+ High Angular Resolution ALMA Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1