溶胶-凝胶法制备的 Cu-Mo-SiO2 催化剂上 Cu 和 Mo 的协同效应用于木质素衍生的 4-丙基愈创木酚的高效稳定脱甲氧基化反应

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-11-21 DOI:10.1016/j.mcat.2024.114697
Hexuan Zhang , Qi Zeng , Song Song , Wuyu Zhao , Xingang Li
{"title":"溶胶-凝胶法制备的 Cu-Mo-SiO2 催化剂上 Cu 和 Mo 的协同效应用于木质素衍生的 4-丙基愈创木酚的高效稳定脱甲氧基化反应","authors":"Hexuan Zhang ,&nbsp;Qi Zeng ,&nbsp;Song Song ,&nbsp;Wuyu Zhao ,&nbsp;Xingang Li","doi":"10.1016/j.mcat.2024.114697","DOIUrl":null,"url":null,"abstract":"<div><div>Mo-based catalysts are promising candidates for the de-methoxylation reaction in lignin valorization due to their unique behavior toward the cleavage of C–O bonds. However, the catalytic activities of Mo-based catalysts currently are still unsatisfactory and suffer from severe deactivation. Herein, we report a novel approach for the construction of robust Cu-modified Mo–SiO<sub>2</sub> catalysts by sol-gel method through the synergistic effect of Cu and Mo, among which 0.33Cu–Mo–SiO<sub>2</sub>-580 with a Cu/Mo molar ratio of 0.33 exhibited the best catalytic performance for the de-methoxylation of lignin-derived 4-propylguaiacol. Remarkably, the space time yield of 4-propylphenol is among the highest value in literature data. The detailed characterizations confirm that the introduction of Cu by sol-gel method leads to the formation of highly dispersed CuMoO<sub>4</sub> on the as-calcined samples, which results in the enhanced interaction between Cu and Mo species and the formation of a large amount of electron-deficient Mo<sup>0</sup> on the as-reduced catalyst. Mechanistic studies reveal that electron-deficient Mo<sup>0</sup> on 0.33Cu–Mo–SiO<sub>2</sub>-580 will not only enhance the adsorption ability of substrate, but also improve the C–O bond cleavage ability for the de-methoxylation reaction. Meanwhile, the hydrogen spillover effect induced by Cu<sup>0</sup> is beneficial to the enhancement of the catalytic activity and stability of 0.33Cu–Mo–SiO<sub>2</sub>-580 catalyst.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"570 ","pages":"Article 114697"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of Cu and Mo over Cu–Mo–SiO2 catalyst prepared by sol-gel method for high-efficient and stable de-methoxylation of lignin-derived 4-propylguaiacol\",\"authors\":\"Hexuan Zhang ,&nbsp;Qi Zeng ,&nbsp;Song Song ,&nbsp;Wuyu Zhao ,&nbsp;Xingang Li\",\"doi\":\"10.1016/j.mcat.2024.114697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mo-based catalysts are promising candidates for the de-methoxylation reaction in lignin valorization due to their unique behavior toward the cleavage of C–O bonds. However, the catalytic activities of Mo-based catalysts currently are still unsatisfactory and suffer from severe deactivation. Herein, we report a novel approach for the construction of robust Cu-modified Mo–SiO<sub>2</sub> catalysts by sol-gel method through the synergistic effect of Cu and Mo, among which 0.33Cu–Mo–SiO<sub>2</sub>-580 with a Cu/Mo molar ratio of 0.33 exhibited the best catalytic performance for the de-methoxylation of lignin-derived 4-propylguaiacol. Remarkably, the space time yield of 4-propylphenol is among the highest value in literature data. The detailed characterizations confirm that the introduction of Cu by sol-gel method leads to the formation of highly dispersed CuMoO<sub>4</sub> on the as-calcined samples, which results in the enhanced interaction between Cu and Mo species and the formation of a large amount of electron-deficient Mo<sup>0</sup> on the as-reduced catalyst. Mechanistic studies reveal that electron-deficient Mo<sup>0</sup> on 0.33Cu–Mo–SiO<sub>2</sub>-580 will not only enhance the adsorption ability of substrate, but also improve the C–O bond cleavage ability for the de-methoxylation reaction. Meanwhile, the hydrogen spillover effect induced by Cu<sup>0</sup> is beneficial to the enhancement of the catalytic activity and stability of 0.33Cu–Mo–SiO<sub>2</sub>-580 catalyst.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"570 \",\"pages\":\"Article 114697\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124008794\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008794","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于钼基催化剂在 C-O 键裂解方面具有独特的行为,因此是木质素价值化过程中脱甲氧基反应的理想候选催化剂。然而,目前 Mo 基催化剂的催化活性仍不尽人意,存在严重的失活现象。在此,我们报告了一种新方法,即通过 Cu 和 Mo 的协同作用,利用溶胶-凝胶法构建稳健的 Cu 改性 Mo-SiO2 催化剂,其中 Cu/Mo 摩尔比为 0.33 的 0.33Cu-Mo-SiO2-580 在木质素衍生的 4-丙基愈创木酚的脱甲氧基反应中表现出最佳催化性能。值得注意的是,4-丙基苯酚的时空产率是文献数据中最高的。详细的表征结果证实,通过溶胶-凝胶法引入 Cu 后,在煅烧样品上形成了高度分散的 CuMoO4,从而增强了 Cu 和 Mo 物种之间的相互作用,并在还原催化剂上形成了大量的缺电子 Mo0。机理研究表明,0.33Cu-Mo-SiO2-580 上的缺电子 Mo0 不仅能增强对底物的吸附能力,还能提高脱甲氧基反应中 C-O 键的裂解能力。同时,Cu0 诱导的氢溢出效应有利于提高 0.33Cu-Mo-SiO2-580 催化剂的催化活性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic effect of Cu and Mo over Cu–Mo–SiO2 catalyst prepared by sol-gel method for high-efficient and stable de-methoxylation of lignin-derived 4-propylguaiacol
Mo-based catalysts are promising candidates for the de-methoxylation reaction in lignin valorization due to their unique behavior toward the cleavage of C–O bonds. However, the catalytic activities of Mo-based catalysts currently are still unsatisfactory and suffer from severe deactivation. Herein, we report a novel approach for the construction of robust Cu-modified Mo–SiO2 catalysts by sol-gel method through the synergistic effect of Cu and Mo, among which 0.33Cu–Mo–SiO2-580 with a Cu/Mo molar ratio of 0.33 exhibited the best catalytic performance for the de-methoxylation of lignin-derived 4-propylguaiacol. Remarkably, the space time yield of 4-propylphenol is among the highest value in literature data. The detailed characterizations confirm that the introduction of Cu by sol-gel method leads to the formation of highly dispersed CuMoO4 on the as-calcined samples, which results in the enhanced interaction between Cu and Mo species and the formation of a large amount of electron-deficient Mo0 on the as-reduced catalyst. Mechanistic studies reveal that electron-deficient Mo0 on 0.33Cu–Mo–SiO2-580 will not only enhance the adsorption ability of substrate, but also improve the C–O bond cleavage ability for the de-methoxylation reaction. Meanwhile, the hydrogen spillover effect induced by Cu0 is beneficial to the enhancement of the catalytic activity and stability of 0.33Cu–Mo–SiO2-580 catalyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Heterogenization of porphyrin as single molecular heterogeneous catalyst for highly recyclable and selective photocatalytic oxidation of sulfides Production of trehalose using reusable cellulose microsphere immobilized enzymes via SpyTag and SpyCatcher Optimizing Phosphine Ligands for Ruthenium Catalysts in Asymmetric Hydrogenation of β-Keto Esters: The Role of Water in Activity and Selectivity Ultrasound-assisted biomimetic mineralization immobilization improves the stability and catalytic performance of laccases derived from Bacillus licheniformis Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1