应用基于多特征的机器学习模型预测心脏骤停的神经系统预后

IF 2.1 Q3 CRITICAL CARE MEDICINE Resuscitation plus Pub Date : 2024-11-21 DOI:10.1016/j.resplu.2024.100829
Peifeng Ni , Sheng Zhang , Wei Hu , Mengyuan Diao
{"title":"应用基于多特征的机器学习模型预测心脏骤停的神经系统预后","authors":"Peifeng Ni ,&nbsp;Sheng Zhang ,&nbsp;Wei Hu ,&nbsp;Mengyuan Diao","doi":"10.1016/j.resplu.2024.100829","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiac arrest (CA) is a major disease burden worldwide and has a poor prognosis. Early prediction of CA outcomes helps optimize the therapeutic regimen and improve patients’ neurological function. As the current guidelines recommend, many factors can be used to evaluate the neurological outcomes of CA patients. Machine learning (ML) has strong analytical abilities and fast computing speed; thus, it plays an irreplaceable role in prediction model development. An increasing number of researchers are using ML algorithms to incorporate demographics, arrest characteristics, clinical variables, biomarkers, physical examination findings, electroencephalograms, imaging, and other factors with predictive value to construct multi-feature prediction models for neurological outcomes of CA survivors. In this review, we explore the current application of ML models using multiple features to predict the neurological outcomes of CA patients. Although the outcome prediction model is still in development, it has strong potential to become a powerful tool in clinical practice.</div></div>","PeriodicalId":94192,"journal":{"name":"Resuscitation plus","volume":"20 ","pages":"Article 100829"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of multi-feature-based machine learning models to predict neurological outcomes of cardiac arrest\",\"authors\":\"Peifeng Ni ,&nbsp;Sheng Zhang ,&nbsp;Wei Hu ,&nbsp;Mengyuan Diao\",\"doi\":\"10.1016/j.resplu.2024.100829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cardiac arrest (CA) is a major disease burden worldwide and has a poor prognosis. Early prediction of CA outcomes helps optimize the therapeutic regimen and improve patients’ neurological function. As the current guidelines recommend, many factors can be used to evaluate the neurological outcomes of CA patients. Machine learning (ML) has strong analytical abilities and fast computing speed; thus, it plays an irreplaceable role in prediction model development. An increasing number of researchers are using ML algorithms to incorporate demographics, arrest characteristics, clinical variables, biomarkers, physical examination findings, electroencephalograms, imaging, and other factors with predictive value to construct multi-feature prediction models for neurological outcomes of CA survivors. In this review, we explore the current application of ML models using multiple features to predict the neurological outcomes of CA patients. Although the outcome prediction model is still in development, it has strong potential to become a powerful tool in clinical practice.</div></div>\",\"PeriodicalId\":94192,\"journal\":{\"name\":\"Resuscitation plus\",\"volume\":\"20 \",\"pages\":\"Article 100829\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resuscitation plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666520424002807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resuscitation plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666520424002807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

心脏骤停(CA)是世界范围内的主要疾病负担,预后较差。早期预测 CA 的预后有助于优化治疗方案和改善患者的神经功能。正如现行指南所建议的,许多因素都可用于评估 CA 患者的神经功能预后。机器学习(ML)具有强大的分析能力和快速的计算速度,因此在预测模型的开发中发挥着不可替代的作用。越来越多的研究人员正在使用 ML 算法,结合人口统计学、骤停特征、临床变量、生物标志物、体格检查结果、脑电图、影像学以及其他具有预测价值的因素,构建 CA 幸存者神经功能预后的多特征预测模型。在这篇综述中,我们探讨了目前应用多特征 ML 模型预测 CA 患者神经系统预后的情况。尽管预后预测模型仍处于开发阶段,但它极有可能成为临床实践中的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of multi-feature-based machine learning models to predict neurological outcomes of cardiac arrest
Cardiac arrest (CA) is a major disease burden worldwide and has a poor prognosis. Early prediction of CA outcomes helps optimize the therapeutic regimen and improve patients’ neurological function. As the current guidelines recommend, many factors can be used to evaluate the neurological outcomes of CA patients. Machine learning (ML) has strong analytical abilities and fast computing speed; thus, it plays an irreplaceable role in prediction model development. An increasing number of researchers are using ML algorithms to incorporate demographics, arrest characteristics, clinical variables, biomarkers, physical examination findings, electroencephalograms, imaging, and other factors with predictive value to construct multi-feature prediction models for neurological outcomes of CA survivors. In this review, we explore the current application of ML models using multiple features to predict the neurological outcomes of CA patients. Although the outcome prediction model is still in development, it has strong potential to become a powerful tool in clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resuscitation plus
Resuscitation plus Critical Care and Intensive Care Medicine, Emergency Medicine
CiteScore
3.00
自引率
0.00%
发文量
0
审稿时长
52 days
期刊最新文献
Cricothyroidotomy in out-of-hospital cardiac arrest: An observational study Does delivering chest compressions to patients who are not in cardiac arrest cause unintentional injury? A systematic review Why physicians use sodium bicarbonate during cardiac arrest: A cross-sectional survey study of adult and pediatric clinicians Application of multi-feature-based machine learning models to predict neurological outcomes of cardiac arrest Associations of long-term hyperoxemia, survival, and neurological outcomes in extracorporeal cardiopulmonary resuscitation patients undergoing targeted temperature management: A retrospective observational analysis of the SAVE-J Ⅱ study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1