Hasan Islam Copuroglu , Emre Pesman , Toru Katayama
{"title":"舭龙骨形状对滚动阻尼影响的实验和数值研究","authors":"Hasan Islam Copuroglu , Emre Pesman , Toru Katayama","doi":"10.1016/j.marstruc.2024.103725","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive roll amplitudes due to roll motion are undesirable in marine ships. Consequently, it is imperative to conduct a detailed analysis of roll motion and the associated roll damping characteristics. This study experimentally and numerically investigates the roll damping characteristics of bilge keels with various geometric shapes on a ship model under different roll amplitudes. By comparing the non-dimensional roll damping coefficients obtained from experiments and numerical analyses, it is observed that bilge keels with geometries differing from the conventional plate shape exhibit distinct roll damping coefficients. Specifically, bilge keels with sharper tip ends demonstrate higher roll damping coefficients. Based on these findings, it is recommended that the corners and tip end of bilge keels be sharpened to enhance the roll damping coefficient.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"100 ","pages":"Article 103725"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation on the influence of bilge keel shape on roll damping\",\"authors\":\"Hasan Islam Copuroglu , Emre Pesman , Toru Katayama\",\"doi\":\"10.1016/j.marstruc.2024.103725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Excessive roll amplitudes due to roll motion are undesirable in marine ships. Consequently, it is imperative to conduct a detailed analysis of roll motion and the associated roll damping characteristics. This study experimentally and numerically investigates the roll damping characteristics of bilge keels with various geometric shapes on a ship model under different roll amplitudes. By comparing the non-dimensional roll damping coefficients obtained from experiments and numerical analyses, it is observed that bilge keels with geometries differing from the conventional plate shape exhibit distinct roll damping coefficients. Specifically, bilge keels with sharper tip ends demonstrate higher roll damping coefficients. Based on these findings, it is recommended that the corners and tip end of bilge keels be sharpened to enhance the roll damping coefficient.</div></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"100 \",\"pages\":\"Article 103725\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924001539\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924001539","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental and numerical investigation on the influence of bilge keel shape on roll damping
Excessive roll amplitudes due to roll motion are undesirable in marine ships. Consequently, it is imperative to conduct a detailed analysis of roll motion and the associated roll damping characteristics. This study experimentally and numerically investigates the roll damping characteristics of bilge keels with various geometric shapes on a ship model under different roll amplitudes. By comparing the non-dimensional roll damping coefficients obtained from experiments and numerical analyses, it is observed that bilge keels with geometries differing from the conventional plate shape exhibit distinct roll damping coefficients. Specifically, bilge keels with sharper tip ends demonstrate higher roll damping coefficients. Based on these findings, it is recommended that the corners and tip end of bilge keels be sharpened to enhance the roll damping coefficient.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.