Xue Yang , Qian Liu , Hongmei Zhang, Yihuan Lu, Liqing Yao
{"title":"中风康复后功能改善的预测模型","authors":"Xue Yang , Qian Liu , Hongmei Zhang, Yihuan Lu, Liqing Yao","doi":"10.1016/j.jnrt.2024.100157","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>This study develops a simple predictive model for identifying stroke patients who have a better chance of showing improved activities of daily living (ADL) outcomes following a stroke.</div></div><div><h3>Methods</h3><div>The cohort of 489 stroke patients was divided into testing and training groups. Multivariate logistic regression analysis was conducted for each model. Four models were compared using the C statistic (AUC), Akaike's information criterion (AIC), and other metrics. The best model was assessed using a nomogram.</div></div><div><h3>Results</h3><div>Univariate analysis revealed that several variables measured significantly higher at discharge than at admission, including manual muscle testing, standing, and so on. Multivariate logistic regression analysis revealed that activities-specific balance confidence, Brunnstrom recovery stage for lower extremities, standing, the mini-balance evaluation systems test, and the Hamilton anxiety scale were independent predictors of ADL. Model 1 was found to be more accurate for the prediction of ADL (AUC: training, 0.916 [0.889−0.943] and test, 0.887 [0.806−0.968]; AIC: training, 257.42 and test, 76.79) than model 2 (AUC: training, 0.850 [0.894−0.806] and test, 0.819 [0.715−0.923]; AIC: training, 314.44 and test, 83.78), model 3 (AUC: training, 0.862 [0.901−0.823] and test, 0.830 [0.731−0.929]; AIC: training, 307.76 and test, 86.55), and model 4 (AUC: training, 0.862 [0.901−0.823] and test, 0.833 [0.733−0.932]; AIC: training, 305.8 and test, 86.28).</div></div><div><h3>Conclusion</h3><div>A multivariate model can be used to predict functionality improvement, as measured by ADL, following hospitalization with a stroke.</div></div>","PeriodicalId":44709,"journal":{"name":"Journal of Neurorestoratology","volume":"13 1","pages":"Article 100157"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A predictive model for functionality improvement after stroke rehabilitation\",\"authors\":\"Xue Yang , Qian Liu , Hongmei Zhang, Yihuan Lu, Liqing Yao\",\"doi\":\"10.1016/j.jnrt.2024.100157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>This study develops a simple predictive model for identifying stroke patients who have a better chance of showing improved activities of daily living (ADL) outcomes following a stroke.</div></div><div><h3>Methods</h3><div>The cohort of 489 stroke patients was divided into testing and training groups. Multivariate logistic regression analysis was conducted for each model. Four models were compared using the C statistic (AUC), Akaike's information criterion (AIC), and other metrics. The best model was assessed using a nomogram.</div></div><div><h3>Results</h3><div>Univariate analysis revealed that several variables measured significantly higher at discharge than at admission, including manual muscle testing, standing, and so on. Multivariate logistic regression analysis revealed that activities-specific balance confidence, Brunnstrom recovery stage for lower extremities, standing, the mini-balance evaluation systems test, and the Hamilton anxiety scale were independent predictors of ADL. Model 1 was found to be more accurate for the prediction of ADL (AUC: training, 0.916 [0.889−0.943] and test, 0.887 [0.806−0.968]; AIC: training, 257.42 and test, 76.79) than model 2 (AUC: training, 0.850 [0.894−0.806] and test, 0.819 [0.715−0.923]; AIC: training, 314.44 and test, 83.78), model 3 (AUC: training, 0.862 [0.901−0.823] and test, 0.830 [0.731−0.929]; AIC: training, 307.76 and test, 86.55), and model 4 (AUC: training, 0.862 [0.901−0.823] and test, 0.833 [0.733−0.932]; AIC: training, 305.8 and test, 86.28).</div></div><div><h3>Conclusion</h3><div>A multivariate model can be used to predict functionality improvement, as measured by ADL, following hospitalization with a stroke.</div></div>\",\"PeriodicalId\":44709,\"journal\":{\"name\":\"Journal of Neurorestoratology\",\"volume\":\"13 1\",\"pages\":\"Article 100157\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurorestoratology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2324242624000640\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurorestoratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2324242624000640","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A predictive model for functionality improvement after stroke rehabilitation
Background
This study develops a simple predictive model for identifying stroke patients who have a better chance of showing improved activities of daily living (ADL) outcomes following a stroke.
Methods
The cohort of 489 stroke patients was divided into testing and training groups. Multivariate logistic regression analysis was conducted for each model. Four models were compared using the C statistic (AUC), Akaike's information criterion (AIC), and other metrics. The best model was assessed using a nomogram.
Results
Univariate analysis revealed that several variables measured significantly higher at discharge than at admission, including manual muscle testing, standing, and so on. Multivariate logistic regression analysis revealed that activities-specific balance confidence, Brunnstrom recovery stage for lower extremities, standing, the mini-balance evaluation systems test, and the Hamilton anxiety scale were independent predictors of ADL. Model 1 was found to be more accurate for the prediction of ADL (AUC: training, 0.916 [0.889−0.943] and test, 0.887 [0.806−0.968]; AIC: training, 257.42 and test, 76.79) than model 2 (AUC: training, 0.850 [0.894−0.806] and test, 0.819 [0.715−0.923]; AIC: training, 314.44 and test, 83.78), model 3 (AUC: training, 0.862 [0.901−0.823] and test, 0.830 [0.731−0.929]; AIC: training, 307.76 and test, 86.55), and model 4 (AUC: training, 0.862 [0.901−0.823] and test, 0.833 [0.733−0.932]; AIC: training, 305.8 and test, 86.28).
Conclusion
A multivariate model can be used to predict functionality improvement, as measured by ADL, following hospitalization with a stroke.