Huitong Shi , Brian M Spurlock , Jiandong Liu , Li Qian
{"title":"转录因子驱动的心脏重编程对细胞命运的控制","authors":"Huitong Shi , Brian M Spurlock , Jiandong Liu , Li Qian","doi":"10.1016/j.gde.2024.102226","DOIUrl":null,"url":null,"abstract":"<div><div>Adult mammals are susceptible to substantial cardiomyocyte (CM) loss following various cardiac diseases due to the limited capacity of CM proliferation and regeneration. Recently, direct cardiac reprogramming, converting fibroblasts into induced CMs, has been achieved both <em>in vitro</em> and <em>in vivo</em> through forced expression of transcription factors (TFs). This review encapsulates the advancements made in enhancing reprogramming efficiency and underlying molecular mechanisms. It covers the optimization of TF-based reprogramming cocktails and <em>in vivo</em> delivery platform and recently identified regulators in enhancing reprogramming efficiency. In addition, we discuss recent insights into the molecular mechanisms of direct cardiac reprogramming from single-cell omics analyses. Finally, we briefly touch on remaining challenges and prospective direction of this field.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102226"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of cell fate upon transcription factor–driven cardiac reprogramming\",\"authors\":\"Huitong Shi , Brian M Spurlock , Jiandong Liu , Li Qian\",\"doi\":\"10.1016/j.gde.2024.102226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Adult mammals are susceptible to substantial cardiomyocyte (CM) loss following various cardiac diseases due to the limited capacity of CM proliferation and regeneration. Recently, direct cardiac reprogramming, converting fibroblasts into induced CMs, has been achieved both <em>in vitro</em> and <em>in vivo</em> through forced expression of transcription factors (TFs). This review encapsulates the advancements made in enhancing reprogramming efficiency and underlying molecular mechanisms. It covers the optimization of TF-based reprogramming cocktails and <em>in vivo</em> delivery platform and recently identified regulators in enhancing reprogramming efficiency. In addition, we discuss recent insights into the molecular mechanisms of direct cardiac reprogramming from single-cell omics analyses. Finally, we briefly touch on remaining challenges and prospective direction of this field.</div></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"89 \",\"pages\":\"Article 102226\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000753\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000753","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Control of cell fate upon transcription factor–driven cardiac reprogramming
Adult mammals are susceptible to substantial cardiomyocyte (CM) loss following various cardiac diseases due to the limited capacity of CM proliferation and regeneration. Recently, direct cardiac reprogramming, converting fibroblasts into induced CMs, has been achieved both in vitro and in vivo through forced expression of transcription factors (TFs). This review encapsulates the advancements made in enhancing reprogramming efficiency and underlying molecular mechanisms. It covers the optimization of TF-based reprogramming cocktails and in vivo delivery platform and recently identified regulators in enhancing reprogramming efficiency. In addition, we discuss recent insights into the molecular mechanisms of direct cardiac reprogramming from single-cell omics analyses. Finally, we briefly touch on remaining challenges and prospective direction of this field.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)