Liying Zhang , Zhiheng Deng , Yunxiang Du , Ziyu Xu , Tianyi Zhang , Zebin Tong , Huasong Ai , Lu-Jun Liang , Lei Liu
{"title":"RAD18 催化形成的泛素化中间体模拟增殖细胞核抗原 PCNA","authors":"Liying Zhang , Zhiheng Deng , Yunxiang Du , Ziyu Xu , Tianyi Zhang , Zebin Tong , Huasong Ai , Lu-Jun Liang , Lei Liu","doi":"10.1016/j.bmc.2024.118016","DOIUrl":null,"url":null,"abstract":"<div><div>The 2-((2-chloroethyl)amino)ethane-1-thiol (CAET)-based chemical trapping strategy is a practical tool for mechanistic studies of E3-catalysed ubiquitination. However, the construction of ubiquitination intermediate mimics (E2-Ub-substrate conjugates) via CAET has been limited to peptides, while its application to folded protein substrates remains unexplored. Here, we report that disulfide bond formation between E2-Ub (RAD6A-Ub) and the folded protein substrate PCNA (proliferating cell nuclear antigen) occurs upon the addition of the PCNA-associated E3 ligase RAD18. Leveraging this finding, we employed intein splicing technology to generate a stable, covalently linked RAD18-RAD6A-Ub-PCNA complex, enabling chemical crosslinking mass spectrometry (CX–MS) analysis to study the structure of this complex. This work showcases use of a substrate-associated E3 ligase to promote disulfide bond formation between an E2-Ub conjugate and a folded substrate for CAET-based trapping, thereby expanding the scope of this technique.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"117 ","pages":"Article 118016"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAD18-catalysed formation of ubiquitination intermediate mimic of proliferating cell nuclear antigen PCNA\",\"authors\":\"Liying Zhang , Zhiheng Deng , Yunxiang Du , Ziyu Xu , Tianyi Zhang , Zebin Tong , Huasong Ai , Lu-Jun Liang , Lei Liu\",\"doi\":\"10.1016/j.bmc.2024.118016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 2-((2-chloroethyl)amino)ethane-1-thiol (CAET)-based chemical trapping strategy is a practical tool for mechanistic studies of E3-catalysed ubiquitination. However, the construction of ubiquitination intermediate mimics (E2-Ub-substrate conjugates) via CAET has been limited to peptides, while its application to folded protein substrates remains unexplored. Here, we report that disulfide bond formation between E2-Ub (RAD6A-Ub) and the folded protein substrate PCNA (proliferating cell nuclear antigen) occurs upon the addition of the PCNA-associated E3 ligase RAD18. Leveraging this finding, we employed intein splicing technology to generate a stable, covalently linked RAD18-RAD6A-Ub-PCNA complex, enabling chemical crosslinking mass spectrometry (CX–MS) analysis to study the structure of this complex. This work showcases use of a substrate-associated E3 ligase to promote disulfide bond formation between an E2-Ub conjugate and a folded substrate for CAET-based trapping, thereby expanding the scope of this technique.</div></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"117 \",\"pages\":\"Article 118016\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089624004309\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624004309","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
RAD18-catalysed formation of ubiquitination intermediate mimic of proliferating cell nuclear antigen PCNA
The 2-((2-chloroethyl)amino)ethane-1-thiol (CAET)-based chemical trapping strategy is a practical tool for mechanistic studies of E3-catalysed ubiquitination. However, the construction of ubiquitination intermediate mimics (E2-Ub-substrate conjugates) via CAET has been limited to peptides, while its application to folded protein substrates remains unexplored. Here, we report that disulfide bond formation between E2-Ub (RAD6A-Ub) and the folded protein substrate PCNA (proliferating cell nuclear antigen) occurs upon the addition of the PCNA-associated E3 ligase RAD18. Leveraging this finding, we employed intein splicing technology to generate a stable, covalently linked RAD18-RAD6A-Ub-PCNA complex, enabling chemical crosslinking mass spectrometry (CX–MS) analysis to study the structure of this complex. This work showcases use of a substrate-associated E3 ligase to promote disulfide bond formation between an E2-Ub conjugate and a folded substrate for CAET-based trapping, thereby expanding the scope of this technique.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.