智能充电优化器:智能电动汽车充电和放电

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-11-06 DOI:10.1016/j.mex.2024.103037
Archana Y. Chaudhari , Prashant B. Koli , Surbhi D. Pagar , Reena S. Sahane , Kalyani D. Kute , Priyanka M. Abhale , Akanksha J. Kulkarni , Abhilasha K. Bhagat
{"title":"智能充电优化器:智能电动汽车充电和放电","authors":"Archana Y. Chaudhari ,&nbsp;Prashant B. Koli ,&nbsp;Surbhi D. Pagar ,&nbsp;Reena S. Sahane ,&nbsp;Kalyani D. Kute ,&nbsp;Priyanka M. Abhale ,&nbsp;Akanksha J. Kulkarni ,&nbsp;Abhilasha K. Bhagat","doi":"10.1016/j.mex.2024.103037","DOIUrl":null,"url":null,"abstract":"<div><div>The important steps toward a low-carbon economy and sustainable energy future is switch to Electric Vehicles(EVs).The rapid development of EVs has brought a risk to reliability of the electrical system. However, the high electricity consumption of EVs will lead to the overload of power grid transformers. Strategies for scheduling charging and discharging that work are essential to reducing the negative grid effects of EVs. In order to reduce the overload of power grid transformers, this paper explores two strategies for intelligent charging and discharging scheduling. The first one is Long Short-Term Memory coupled with Integer Linear Programming(LSTM-ILP)and the second one is Q-learning. The LSTM-ILP aims to minimize the charging and discharging schedules delay. The Q-learning method makes use of reinforcement learning to ascertain the best course of action for EVs in relation to their state-of-charge and the demand on the grid. The outcomes of this research show that both strategies are successful in lowering the peak-to-average ratio of the grid and lessening the influence of EV charging demands.<ul><li><span>•</span><span><div>This research aims to Couple Long Short-Term Memory with Integer Linear Programming</div></span></li><li><span>•</span><span><div>Applying Q-learning to minimize the peak to-average ratio of grid load through effective peak shaving and valley filling</div></span></li><li><span>•</span><span><div>Minimizing EV charging costs for users while respecting their mobility needs</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"13 ","pages":"Article 103037"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart charge-optimizer: Intelligent electric vehicle charging and discharging\",\"authors\":\"Archana Y. Chaudhari ,&nbsp;Prashant B. Koli ,&nbsp;Surbhi D. Pagar ,&nbsp;Reena S. Sahane ,&nbsp;Kalyani D. Kute ,&nbsp;Priyanka M. Abhale ,&nbsp;Akanksha J. Kulkarni ,&nbsp;Abhilasha K. Bhagat\",\"doi\":\"10.1016/j.mex.2024.103037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The important steps toward a low-carbon economy and sustainable energy future is switch to Electric Vehicles(EVs).The rapid development of EVs has brought a risk to reliability of the electrical system. However, the high electricity consumption of EVs will lead to the overload of power grid transformers. Strategies for scheduling charging and discharging that work are essential to reducing the negative grid effects of EVs. In order to reduce the overload of power grid transformers, this paper explores two strategies for intelligent charging and discharging scheduling. The first one is Long Short-Term Memory coupled with Integer Linear Programming(LSTM-ILP)and the second one is Q-learning. The LSTM-ILP aims to minimize the charging and discharging schedules delay. The Q-learning method makes use of reinforcement learning to ascertain the best course of action for EVs in relation to their state-of-charge and the demand on the grid. The outcomes of this research show that both strategies are successful in lowering the peak-to-average ratio of the grid and lessening the influence of EV charging demands.<ul><li><span>•</span><span><div>This research aims to Couple Long Short-Term Memory with Integer Linear Programming</div></span></li><li><span>•</span><span><div>Applying Q-learning to minimize the peak to-average ratio of grid load through effective peak shaving and valley filling</div></span></li><li><span>•</span><span><div>Minimizing EV charging costs for users while respecting their mobility needs</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"13 \",\"pages\":\"Article 103037\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016124004886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124004886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车的快速发展给电力系统的可靠性带来了风险。然而,电动汽车的高用电量将导致电网变压器过载。要减少电动汽车对电网的负面影响,就必须采取行之有效的充放电调度策略。为了减少电网变压器过载,本文探讨了两种智能充放电调度策略。第一种是长短期记忆与整数线性规划(LSTM-ILP),第二种是Q-learning。LSTM-ILP 的目标是最大限度地减少充放电调度延迟。Q-learning 方法利用强化学习来确定与电动汽车充电状态和电网需求相关的最佳行动方案。本研究旨在将长短期记忆与整数线性规划相结合--应用 Q-learning 通过有效的削峰填谷,最大限度地降低电网负荷的峰均比--在尊重用户移动需求的同时,最大限度地降低用户的电动汽车充电成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart charge-optimizer: Intelligent electric vehicle charging and discharging
The important steps toward a low-carbon economy and sustainable energy future is switch to Electric Vehicles(EVs).The rapid development of EVs has brought a risk to reliability of the electrical system. However, the high electricity consumption of EVs will lead to the overload of power grid transformers. Strategies for scheduling charging and discharging that work are essential to reducing the negative grid effects of EVs. In order to reduce the overload of power grid transformers, this paper explores two strategies for intelligent charging and discharging scheduling. The first one is Long Short-Term Memory coupled with Integer Linear Programming(LSTM-ILP)and the second one is Q-learning. The LSTM-ILP aims to minimize the charging and discharging schedules delay. The Q-learning method makes use of reinforcement learning to ascertain the best course of action for EVs in relation to their state-of-charge and the demand on the grid. The outcomes of this research show that both strategies are successful in lowering the peak-to-average ratio of the grid and lessening the influence of EV charging demands.
  • This research aims to Couple Long Short-Term Memory with Integer Linear Programming
  • Applying Q-learning to minimize the peak to-average ratio of grid load through effective peak shaving and valley filling
  • Minimizing EV charging costs for users while respecting their mobility needs
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
A method to enhance privacy preservation in cloud storage through a three-layer scheme for computational intelligence in fog computing Method for measuring the transpiration resistance of fruit and vegetables Deep learning-based classification of alfalfa varieties: A comparative study using a custom leaf image dataset Evaluative comparison of machine learning algorithms for stutter detection and classification Optimized Methyl methacrylate embedding of small and large undecalcified bones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1