通过雾计算中计算智能的三层方案加强云存储中隐私保护的方法

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-11-19 DOI:10.1016/j.mex.2024.103053
Sneha Ojha , Priyanka Paygude , Amol Dhumane , Snehal Rathi , Vijaykumar Bidve , Ajay Kumar , Prakash Devale
{"title":"通过雾计算中计算智能的三层方案加强云存储中隐私保护的方法","authors":"Sneha Ojha ,&nbsp;Priyanka Paygude ,&nbsp;Amol Dhumane ,&nbsp;Snehal Rathi ,&nbsp;Vijaykumar Bidve ,&nbsp;Ajay Kumar ,&nbsp;Prakash Devale","doi":"10.1016/j.mex.2024.103053","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in cloud computing have heightened concerns about data control and privacy due to vulnerabilities in traditional encryption methods, which may not withstand internal attacks from cloud servers. To overcome these issues about the data privacy and control of transfer on cloud, a novel three-tier storage model incorporating fog computing method has been proposed. This framework leverages the advantages of cloud storage while enhancing data privacy. The approach uses the Hash-Solomon code algorithm to partition data into distinct segments, distributing a portion of it across local machines and fog servers, in addition to cloud storage. This distribution not only increases data privacy but also optimises storage efficiency. Computational intelligence plays a crucial role by calculating the optimal data distribution across cloud, fog, and local servers, ensuring balanced and secure data storage.<ul><li><span>•</span><span><div>Experimental analysis of this mathematical mode has demonstrated a significant improvement in storage efficiency, with increases ranging from 30 % to 40 % as the volume of data blocks grows.</div></span></li><li><span>•</span><span><div>This innovative framework based on Hash Solomon code method effectively addresses privacy concerns while maintaining the benefits of cloud computing, offering a robust solution for secure and efficient data management.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"13 ","pages":"Article 103053"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method to enhance privacy preservation in cloud storage through a three-layer scheme for computational intelligence in fog computing\",\"authors\":\"Sneha Ojha ,&nbsp;Priyanka Paygude ,&nbsp;Amol Dhumane ,&nbsp;Snehal Rathi ,&nbsp;Vijaykumar Bidve ,&nbsp;Ajay Kumar ,&nbsp;Prakash Devale\",\"doi\":\"10.1016/j.mex.2024.103053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advancements in cloud computing have heightened concerns about data control and privacy due to vulnerabilities in traditional encryption methods, which may not withstand internal attacks from cloud servers. To overcome these issues about the data privacy and control of transfer on cloud, a novel three-tier storage model incorporating fog computing method has been proposed. This framework leverages the advantages of cloud storage while enhancing data privacy. The approach uses the Hash-Solomon code algorithm to partition data into distinct segments, distributing a portion of it across local machines and fog servers, in addition to cloud storage. This distribution not only increases data privacy but also optimises storage efficiency. Computational intelligence plays a crucial role by calculating the optimal data distribution across cloud, fog, and local servers, ensuring balanced and secure data storage.<ul><li><span>•</span><span><div>Experimental analysis of this mathematical mode has demonstrated a significant improvement in storage efficiency, with increases ranging from 30 % to 40 % as the volume of data blocks grows.</div></span></li><li><span>•</span><span><div>This innovative framework based on Hash Solomon code method effectively addresses privacy concerns while maintaining the benefits of cloud computing, offering a robust solution for secure and efficient data management.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"13 \",\"pages\":\"Article 103053\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016124005041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124005041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于传统加密方法存在漏洞,可能无法抵御来自云服务器的内部攻击,云计算的最新进展加剧了人们对数据控制和隐私的担忧。为了克服这些有关数据隐私和云端传输控制的问题,我们提出了一种结合雾计算方法的新型三层存储模型。该框架充分利用了云存储的优势,同时提高了数据的私密性。该方法使用哈希-所罗门码算法将数据划分为不同的部分,除云存储外,还将一部分数据分布在本地机器和雾服务器上。这种分布不仅提高了数据隐私性,还优化了存储效率。计算智能通过计算云、雾和本地服务器之间的最佳数据分布发挥了关键作用,确保了数据存储的均衡性和安全性。对这种数学模式的实验分析表明,随着数据块数量的增加,存储效率得到了显著提高,提高幅度从30%到40%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method to enhance privacy preservation in cloud storage through a three-layer scheme for computational intelligence in fog computing
Recent advancements in cloud computing have heightened concerns about data control and privacy due to vulnerabilities in traditional encryption methods, which may not withstand internal attacks from cloud servers. To overcome these issues about the data privacy and control of transfer on cloud, a novel three-tier storage model incorporating fog computing method has been proposed. This framework leverages the advantages of cloud storage while enhancing data privacy. The approach uses the Hash-Solomon code algorithm to partition data into distinct segments, distributing a portion of it across local machines and fog servers, in addition to cloud storage. This distribution not only increases data privacy but also optimises storage efficiency. Computational intelligence plays a crucial role by calculating the optimal data distribution across cloud, fog, and local servers, ensuring balanced and secure data storage.
  • Experimental analysis of this mathematical mode has demonstrated a significant improvement in storage efficiency, with increases ranging from 30 % to 40 % as the volume of data blocks grows.
  • This innovative framework based on Hash Solomon code method effectively addresses privacy concerns while maintaining the benefits of cloud computing, offering a robust solution for secure and efficient data management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
A method to enhance privacy preservation in cloud storage through a three-layer scheme for computational intelligence in fog computing Method for measuring the transpiration resistance of fruit and vegetables Deep learning-based classification of alfalfa varieties: A comparative study using a custom leaf image dataset Evaluative comparison of machine learning algorithms for stutter detection and classification Optimized Methyl methacrylate embedding of small and large undecalcified bones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1