Shan Wang , Xu Chu , Zhaoyang Liu , Congwei Wang , Zhongyu Fan , Yazhou Chen , Zhengguo Zhang
{"title":"细胞外基质硬度通过重编程脂肪酸氧化依赖性巨噬细胞极化促进神经元生长","authors":"Shan Wang , Xu Chu , Zhaoyang Liu , Congwei Wang , Zhongyu Fan , Yazhou Chen , Zhengguo Zhang","doi":"10.1016/j.bbagen.2024.130731","DOIUrl":null,"url":null,"abstract":"<div><div>The extracellular matrix (ECM) is involved in various of pathophysiology processes, such as wound healing and neurogenesis. During tissue injury, the recruited bone marrow-derived monocytes in the impaired site undergo functional and phenotypic changes and participate in the initiation, maintenance, and resolution phases of tissue repair. However, the effects of ECM stiffness on monocyte differentiation and function remain largely unknown. Herein, we developed a gelatin-hydroxyphenylpropionic acid-based hydrogel with different substrate stiffnesses by varying hydrogen peroxide concentrations, which demonstrated good biocompatibility. Furthermore, the high substrate stiffness hydrogel could polarize macrophage into immunosuppressive phenotype with increased expression of interleukin 10, transforming growth factor β, CD206, and CD163. Twenty three differentially expressed metabolites were identified in stiff hydrogel-cultured macrophages in comparison with soft hydrogel cultured macrophages via metabolite analysis. In addition, 4-hydroxybenzoic acid was the most upregulated metabolite, which could confer protection against neuronal and acute inflammation. Mechanistically, the high substrate stiffness induced macrophage immunosuppressive differentiation by upregulating the expression of the fatty acid oxidation (FAO)-related proteins peroxisome proliferator-activated receptor (PPAR)-γ and PPAR-δ. Consistently, the FAO inhibitor etomoxir reversed the high substrate stiffness mediated macrophage immunosuppressive polarization and neurite outgrowth. Therefore, the alteration in macrophage phenotype induced by increased substrate stiffness can promote tissue repair in clinical applications.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 1","pages":"Article 130731"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular matrix stiffness facilitates neurite outgrowth by reprogramming the fatty acid oxidation-dependent macrophage polarization\",\"authors\":\"Shan Wang , Xu Chu , Zhaoyang Liu , Congwei Wang , Zhongyu Fan , Yazhou Chen , Zhengguo Zhang\",\"doi\":\"10.1016/j.bbagen.2024.130731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The extracellular matrix (ECM) is involved in various of pathophysiology processes, such as wound healing and neurogenesis. During tissue injury, the recruited bone marrow-derived monocytes in the impaired site undergo functional and phenotypic changes and participate in the initiation, maintenance, and resolution phases of tissue repair. However, the effects of ECM stiffness on monocyte differentiation and function remain largely unknown. Herein, we developed a gelatin-hydroxyphenylpropionic acid-based hydrogel with different substrate stiffnesses by varying hydrogen peroxide concentrations, which demonstrated good biocompatibility. Furthermore, the high substrate stiffness hydrogel could polarize macrophage into immunosuppressive phenotype with increased expression of interleukin 10, transforming growth factor β, CD206, and CD163. Twenty three differentially expressed metabolites were identified in stiff hydrogel-cultured macrophages in comparison with soft hydrogel cultured macrophages via metabolite analysis. In addition, 4-hydroxybenzoic acid was the most upregulated metabolite, which could confer protection against neuronal and acute inflammation. Mechanistically, the high substrate stiffness induced macrophage immunosuppressive differentiation by upregulating the expression of the fatty acid oxidation (FAO)-related proteins peroxisome proliferator-activated receptor (PPAR)-γ and PPAR-δ. Consistently, the FAO inhibitor etomoxir reversed the high substrate stiffness mediated macrophage immunosuppressive polarization and neurite outgrowth. Therefore, the alteration in macrophage phenotype induced by increased substrate stiffness can promote tissue repair in clinical applications.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\"1869 1\",\"pages\":\"Article 130731\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416524001740\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416524001740","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Extracellular matrix stiffness facilitates neurite outgrowth by reprogramming the fatty acid oxidation-dependent macrophage polarization
The extracellular matrix (ECM) is involved in various of pathophysiology processes, such as wound healing and neurogenesis. During tissue injury, the recruited bone marrow-derived monocytes in the impaired site undergo functional and phenotypic changes and participate in the initiation, maintenance, and resolution phases of tissue repair. However, the effects of ECM stiffness on monocyte differentiation and function remain largely unknown. Herein, we developed a gelatin-hydroxyphenylpropionic acid-based hydrogel with different substrate stiffnesses by varying hydrogen peroxide concentrations, which demonstrated good biocompatibility. Furthermore, the high substrate stiffness hydrogel could polarize macrophage into immunosuppressive phenotype with increased expression of interleukin 10, transforming growth factor β, CD206, and CD163. Twenty three differentially expressed metabolites were identified in stiff hydrogel-cultured macrophages in comparison with soft hydrogel cultured macrophages via metabolite analysis. In addition, 4-hydroxybenzoic acid was the most upregulated metabolite, which could confer protection against neuronal and acute inflammation. Mechanistically, the high substrate stiffness induced macrophage immunosuppressive differentiation by upregulating the expression of the fatty acid oxidation (FAO)-related proteins peroxisome proliferator-activated receptor (PPAR)-γ and PPAR-δ. Consistently, the FAO inhibitor etomoxir reversed the high substrate stiffness mediated macrophage immunosuppressive polarization and neurite outgrowth. Therefore, the alteration in macrophage phenotype induced by increased substrate stiffness can promote tissue repair in clinical applications.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.