双层塔架抗屈曲优化设计

IF 4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Constructional Steel Research Pub Date : 2024-11-22 DOI:10.1016/j.jcsr.2024.109173
Cheng Ye , Wenhao Pan , Ruhao Wang , Yaozhi Luo
{"title":"双层塔架抗屈曲优化设计","authors":"Cheng Ye ,&nbsp;Wenhao Pan ,&nbsp;Ruhao Wang ,&nbsp;Yaozhi Luo","doi":"10.1016/j.jcsr.2024.109173","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the optimal design of double-level guyed towers against buckling with a given material volume. The double-level guyed tower is simplified as a lateral braced column considering the pre-tensioned cable stiffness. The buckling criterion for double-level guyed towers is then analytically derived based on a matrix stiffness method (MSM) that enables the use of one element per member for an exact solution. Optimal designs of double-level guyed towers under various base fixity factors are obtained through an optimization procedure involving two decision variables: the height ratio and the cross-sectional area ratio between the upper level and the lower level. Optimization results indicate that pinned-ended double-level guyed towers achieve their maximum buckling load at a height ratio of 1.19 and a cross-sectional area ratio of 1.19. In contrast, fixed-ended towers achieve their maximum buckling load with a height ratio of 0.70 and a cross-sectional area ratio of 1.13. Transitioning from pinned to fixed base conditions increases the maximum buckling load by approximately 1.52 times. Design recommendations for double-level guyed towers are further presented.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"225 ","pages":"Article 109173"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal design of double-level guyed towers against buckling\",\"authors\":\"Cheng Ye ,&nbsp;Wenhao Pan ,&nbsp;Ruhao Wang ,&nbsp;Yaozhi Luo\",\"doi\":\"10.1016/j.jcsr.2024.109173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the optimal design of double-level guyed towers against buckling with a given material volume. The double-level guyed tower is simplified as a lateral braced column considering the pre-tensioned cable stiffness. The buckling criterion for double-level guyed towers is then analytically derived based on a matrix stiffness method (MSM) that enables the use of one element per member for an exact solution. Optimal designs of double-level guyed towers under various base fixity factors are obtained through an optimization procedure involving two decision variables: the height ratio and the cross-sectional area ratio between the upper level and the lower level. Optimization results indicate that pinned-ended double-level guyed towers achieve their maximum buckling load at a height ratio of 1.19 and a cross-sectional area ratio of 1.19. In contrast, fixed-ended towers achieve their maximum buckling load with a height ratio of 0.70 and a cross-sectional area ratio of 1.13. Transitioning from pinned to fixed base conditions increases the maximum buckling load by approximately 1.52 times. Design recommendations for double-level guyed towers are further presented.</div></div>\",\"PeriodicalId\":15557,\"journal\":{\"name\":\"Journal of Constructional Steel Research\",\"volume\":\"225 \",\"pages\":\"Article 109173\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Constructional Steel Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143974X24007235\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24007235","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是给定材料体积下双层盖梁塔抗屈曲的优化设计。考虑到预张拉索刚度,双层锚索塔被简化为横向支撑柱。然后,根据矩阵刚度法(MSM)分析推导出双层锚索塔的屈曲标准,该方法可使每个构件只使用一个元素就能获得精确的解决方案。通过涉及两个决策变量(高度比以及上层和下层之间的横截面积比)的优化程序,获得了不同基座固定系数下双层盖梁塔架的最佳设计。优化结果表明,在高度比为 1.19 和横截面积比为 1.19 时,销端式双层格构塔达到最大屈曲载荷。相比之下,固定端塔架在高度比为 0.70 和横截面积比为 1.13 时可达到最大屈曲荷载。从销钉基座过渡到固定基座条件下,最大屈曲载荷增加了约 1.52 倍。此外,还进一步介绍了双层索基塔的设计建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal design of double-level guyed towers against buckling
This paper is concerned with the optimal design of double-level guyed towers against buckling with a given material volume. The double-level guyed tower is simplified as a lateral braced column considering the pre-tensioned cable stiffness. The buckling criterion for double-level guyed towers is then analytically derived based on a matrix stiffness method (MSM) that enables the use of one element per member for an exact solution. Optimal designs of double-level guyed towers under various base fixity factors are obtained through an optimization procedure involving two decision variables: the height ratio and the cross-sectional area ratio between the upper level and the lower level. Optimization results indicate that pinned-ended double-level guyed towers achieve their maximum buckling load at a height ratio of 1.19 and a cross-sectional area ratio of 1.19. In contrast, fixed-ended towers achieve their maximum buckling load with a height ratio of 0.70 and a cross-sectional area ratio of 1.13. Transitioning from pinned to fixed base conditions increases the maximum buckling load by approximately 1.52 times. Design recommendations for double-level guyed towers are further presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Constructional Steel Research
Journal of Constructional Steel Research 工程技术-工程:土木
CiteScore
7.90
自引率
19.50%
发文量
550
审稿时长
46 days
期刊介绍: The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.
期刊最新文献
The capacity curve framework of EN 1993-1-6 (2025): Cylindrical shells under uniform meridional compression vs uniform bending Residual stress distributions of trapezoidal corrugated web I-members: Experimental and numerical study Theoretical and FEA study on shear performance of novel shear connectors Fatigue performance of stainless steel bolts in tension under variable amplitude loading Merging behaviour and fatigue life evaluation of multi-cracks in welds of OSDs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1