Hasan Asyari Arief , Peter James Thomas , Weichang Li , Christian Brekken , Magnus Hjelstuen , Ivar Eskerud Smith , Steinar Kragset , Aggelos Katsaggelos
{"title":"用于广义流体含量估算的非线性插值变异自动编码器","authors":"Hasan Asyari Arief , Peter James Thomas , Weichang Li , Christian Brekken , Magnus Hjelstuen , Ivar Eskerud Smith , Steinar Kragset , Aggelos Katsaggelos","doi":"10.1016/j.geoen.2024.213474","DOIUrl":null,"url":null,"abstract":"<div><div>Generalizing machine learning models for petroleum applications, especially in scenarios with limited and less varied training data compared to real-world conditions, remains a persistent challenge. This study introduces a novel method combining interpolation mixup with a Variational Autoencoder (VAE) and adaptable interpolation loss for downstream regression tasks. By implementing this approach, we generate high-quality interpolated samples, yielding accurate estimations. Experimental validation on a real-world industrial dataset focused on fluid content measurement demonstrates the superior performance of our method compared to other interpolation and regularization techniques. Our approach achieves over a 15% improvement on generalized out-of-distribution datasets, offering crucial insights for fluid content estimation and practical implications for industrial applications.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"244 ","pages":"Article 213474"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear interpolated Variational Autoencoder for generalized fluid content estimation\",\"authors\":\"Hasan Asyari Arief , Peter James Thomas , Weichang Li , Christian Brekken , Magnus Hjelstuen , Ivar Eskerud Smith , Steinar Kragset , Aggelos Katsaggelos\",\"doi\":\"10.1016/j.geoen.2024.213474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generalizing machine learning models for petroleum applications, especially in scenarios with limited and less varied training data compared to real-world conditions, remains a persistent challenge. This study introduces a novel method combining interpolation mixup with a Variational Autoencoder (VAE) and adaptable interpolation loss for downstream regression tasks. By implementing this approach, we generate high-quality interpolated samples, yielding accurate estimations. Experimental validation on a real-world industrial dataset focused on fluid content measurement demonstrates the superior performance of our method compared to other interpolation and regularization techniques. Our approach achieves over a 15% improvement on generalized out-of-distribution datasets, offering crucial insights for fluid content estimation and practical implications for industrial applications.</div></div>\",\"PeriodicalId\":100578,\"journal\":{\"name\":\"Geoenergy Science and Engineering\",\"volume\":\"244 \",\"pages\":\"Article 213474\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenergy Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949891024008443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891024008443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Nonlinear interpolated Variational Autoencoder for generalized fluid content estimation
Generalizing machine learning models for petroleum applications, especially in scenarios with limited and less varied training data compared to real-world conditions, remains a persistent challenge. This study introduces a novel method combining interpolation mixup with a Variational Autoencoder (VAE) and adaptable interpolation loss for downstream regression tasks. By implementing this approach, we generate high-quality interpolated samples, yielding accurate estimations. Experimental validation on a real-world industrial dataset focused on fluid content measurement demonstrates the superior performance of our method compared to other interpolation and regularization techniques. Our approach achieves over a 15% improvement on generalized out-of-distribution datasets, offering crucial insights for fluid content estimation and practical implications for industrial applications.