{"title":"基于 MORE 框架的中子和热液耦合研究与应用","authors":"Bo Wang , Zeyi Xie , Dayu Huang , Wenbo Zhao , Hongbo Zhang , Zhang Chen , Wei Zeng , Wenbin Wu","doi":"10.1016/j.anucene.2024.111067","DOIUrl":null,"url":null,"abstract":"<div><div>The MORE framework, developed by the Nuclear Power Institute of China (NPIC), is a new coupling framework that integrates multiple powerful functionalities for handling input and output data from simulation codes. SHARK, also developed by NPIC, is an advanced whole core transport code that incorporates constructive solid geometry (CSG), the subgroup method, and the 2D/1D transport method. TH1D, another code developed by NPIC, is a single-channel thermal–hydraulic code that utilizes the single-channel model and one-dimensional heat conduction equation. Both SHARK and TH1D are encapsulated within the MORE framework. The coupling system generates interfaces for coupling which are controlled by a supervisor. Finally, validation of the coupling system is conducted using the VERA benchmark, with numerical results demonstrating that the MORE framework is suitable for accurate whole core coupling calculations.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"212 ","pages":"Article 111067"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and application of the neutronics and thermal–hydraulic coupling based on the MORE framework\",\"authors\":\"Bo Wang , Zeyi Xie , Dayu Huang , Wenbo Zhao , Hongbo Zhang , Zhang Chen , Wei Zeng , Wenbin Wu\",\"doi\":\"10.1016/j.anucene.2024.111067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The MORE framework, developed by the Nuclear Power Institute of China (NPIC), is a new coupling framework that integrates multiple powerful functionalities for handling input and output data from simulation codes. SHARK, also developed by NPIC, is an advanced whole core transport code that incorporates constructive solid geometry (CSG), the subgroup method, and the 2D/1D transport method. TH1D, another code developed by NPIC, is a single-channel thermal–hydraulic code that utilizes the single-channel model and one-dimensional heat conduction equation. Both SHARK and TH1D are encapsulated within the MORE framework. The coupling system generates interfaces for coupling which are controlled by a supervisor. Finally, validation of the coupling system is conducted using the VERA benchmark, with numerical results demonstrating that the MORE framework is suitable for accurate whole core coupling calculations.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":\"212 \",\"pages\":\"Article 111067\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924007308\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924007308","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
由中国核动力研究院(NPIC)开发的 MORE 框架是一个新的耦合框架,集成了多种强大功能,用于处理来自仿真代码的输入和输出数据。同样由 NPIC 开发的 SHARK 是一种先进的全核输运代码,它集成了构造实体几何(CSG)、子群法和 2D/1D 输运法。TH1D 是 NPIC 开发的另一种代码,是一种单通道热流体力学代码,采用单通道模型和一维热传导方程。SHARK 和 TH1D 都封装在 MORE 框架内。耦合系统生成的耦合界面由监控器控制。最后,使用 VERA 基准对耦合系统进行了验证,数值结果表明 MORE 框架适用于精确的全核心耦合计算。
Research and application of the neutronics and thermal–hydraulic coupling based on the MORE framework
The MORE framework, developed by the Nuclear Power Institute of China (NPIC), is a new coupling framework that integrates multiple powerful functionalities for handling input and output data from simulation codes. SHARK, also developed by NPIC, is an advanced whole core transport code that incorporates constructive solid geometry (CSG), the subgroup method, and the 2D/1D transport method. TH1D, another code developed by NPIC, is a single-channel thermal–hydraulic code that utilizes the single-channel model and one-dimensional heat conduction equation. Both SHARK and TH1D are encapsulated within the MORE framework. The coupling system generates interfaces for coupling which are controlled by a supervisor. Finally, validation of the coupling system is conducted using the VERA benchmark, with numerical results demonstrating that the MORE framework is suitable for accurate whole core coupling calculations.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.