机器学习辅助关联预测 VVER-1000 燃料中的裂变气体分数和氢浓度

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Annals of Nuclear Energy Pub Date : 2024-11-21 DOI:10.1016/j.anucene.2024.111073
Yalcin Ilteris Kaan , Khashayar Sadeghi , Seyed Hadi Ghazaie , Ekaterina Sokolova , Victor Modestov , Vitaly Sergeev , Puzhen Gao
{"title":"机器学习辅助关联预测 VVER-1000 燃料中的裂变气体分数和氢浓度","authors":"Yalcin Ilteris Kaan ,&nbsp;Khashayar Sadeghi ,&nbsp;Seyed Hadi Ghazaie ,&nbsp;Ekaterina Sokolova ,&nbsp;Victor Modestov ,&nbsp;Vitaly Sergeev ,&nbsp;Puzhen Gao","doi":"10.1016/j.anucene.2024.111073","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to develop correlations for predicting the fission gas fractions and hydrogen gas concentration during a fuel cycle, using gene expression programming as an evolutionary machine learning approach. The well-known FRAPCON code is used for generating a straightforward dataset under steady-state conditions. The two-step sensitivity analysis is carried out to identify the most influential parameters for correlation development. Wilks’ statistical method is used to generate 59 scenarios to distribute input parameter uncertainties evenly, which leads to a confidence level of 95 %. The mean squared error for xenon, krypton, and helium is 0, while hydrogen exhibited a value of 59.36 since fraction values are between 0 and 1 and concentration ranged from 5 PPM to 200 PPM. <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> values exceeded 0.97, indicating strong correlation accuracy. The high accuracy achieved from the correlations demonstrates that selecting a 59-sample dataset based on Wilk’s method is sufficient to obtain accuracy exceeding 95 %.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"212 ","pages":"Article 111073"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-assisted correlations for prediction of fission gas fractions and hydrogen concentration in VVER-1000 fuel\",\"authors\":\"Yalcin Ilteris Kaan ,&nbsp;Khashayar Sadeghi ,&nbsp;Seyed Hadi Ghazaie ,&nbsp;Ekaterina Sokolova ,&nbsp;Victor Modestov ,&nbsp;Vitaly Sergeev ,&nbsp;Puzhen Gao\",\"doi\":\"10.1016/j.anucene.2024.111073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to develop correlations for predicting the fission gas fractions and hydrogen gas concentration during a fuel cycle, using gene expression programming as an evolutionary machine learning approach. The well-known FRAPCON code is used for generating a straightforward dataset under steady-state conditions. The two-step sensitivity analysis is carried out to identify the most influential parameters for correlation development. Wilks’ statistical method is used to generate 59 scenarios to distribute input parameter uncertainties evenly, which leads to a confidence level of 95 %. The mean squared error for xenon, krypton, and helium is 0, while hydrogen exhibited a value of 59.36 since fraction values are between 0 and 1 and concentration ranged from 5 PPM to 200 PPM. <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> values exceeded 0.97, indicating strong correlation accuracy. The high accuracy achieved from the correlations demonstrates that selecting a 59-sample dataset based on Wilk’s method is sufficient to obtain accuracy exceeding 95 %.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":\"212 \",\"pages\":\"Article 111073\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924007369\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924007369","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用基因表达编程作为进化机器学习方法,开发用于预测燃料循环过程中裂变气体分数和氢气浓度的相关性。使用著名的 FRAPCON 代码生成稳态条件下的直接数据集。通过两步敏感性分析,确定对相关性发展最有影响的参数。使用 Wilks 统计方法生成 59 种情景,均匀分布输入参数的不确定性,从而得出 95 % 的置信度。氙、氪和氦的均方误差为 0,而氢的均方误差为 59.36,因为分数值在 0 到 1 之间,浓度范围在 5 PPM 到 200 PPM 之间。R2 值超过 0.97,表明相关精度很高。相关性达到的高精确度表明,根据 Wilk 方法选择 59 个样本数据集足以获得超过 95 % 的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-assisted correlations for prediction of fission gas fractions and hydrogen concentration in VVER-1000 fuel
This study aims to develop correlations for predicting the fission gas fractions and hydrogen gas concentration during a fuel cycle, using gene expression programming as an evolutionary machine learning approach. The well-known FRAPCON code is used for generating a straightforward dataset under steady-state conditions. The two-step sensitivity analysis is carried out to identify the most influential parameters for correlation development. Wilks’ statistical method is used to generate 59 scenarios to distribute input parameter uncertainties evenly, which leads to a confidence level of 95 %. The mean squared error for xenon, krypton, and helium is 0, while hydrogen exhibited a value of 59.36 since fraction values are between 0 and 1 and concentration ranged from 5 PPM to 200 PPM. R2 values exceeded 0.97, indicating strong correlation accuracy. The high accuracy achieved from the correlations demonstrates that selecting a 59-sample dataset based on Wilk’s method is sufficient to obtain accuracy exceeding 95 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
期刊最新文献
Evaluation of uranium-233 neutron capture cross section in keV region Application of data partitioned Kriging algorithm with GPU acceleration in real-time and refined reconstruction of three-dimensional radiation fields Boiling critical characteristics in narrow rectangular channel under local heat flux concentration conditions Investigation on thermal response of high temperature heat pipe under thermal mismatch conditions Numerical simulation of impurity particles migration and deposition within the 5 × 5 fuel assembly under nucleate boiling conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1