Zhong Zheng, Zhaohua Zhou, Ruipeng Chen, Jiajie Liu, Chun Liu, Lirong Zhang, Lei Zhou, Miao Xu, Lei Wang, Weijing Wu, Junbiao Peng
{"title":"用于 AMOLED 显示器去村效应的精确亚像素亮度提取方法","authors":"Zhong Zheng, Zhaohua Zhou, Ruipeng Chen, Jiajie Liu, Chun Liu, Lirong Zhang, Lei Zhou, Miao Xu, Lei Wang, Weijing Wu, Junbiao Peng","doi":"10.1016/j.displa.2024.102889","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, Mura defects have a significant impact on the yield of AMOLED panels, and De-Mura plays a critical role in the compensation. To enhance the applicability of the subpixel luminance extraction method in De-Mura and to address inaccuracies caused by aperture diffraction limit and geometric defocusing in camera imaging, this paper proposes a precise extraction method based on effective area. We establish the concept of the effective area first and then determine the effective area of subpixel imaging on the camera sensor by incorporating the circle of confusion (CoC) caused by aperture diffraction limits and geometric defocusing. Finally, more precise luminance information is obtained. Results show that, after compensation, the Mura on the white screen is almost eliminated subjectively. Objectively, by constructing normalized luminance curves for subpixels in Mura regions, the standard deviation indicates that our method outperforms the traditional whole-pixel method, improving uniformity by approximately 50%.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"86 ","pages":"Article 102889"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise subpixel luminance extraction method for De-Mura of AMOLED displays\",\"authors\":\"Zhong Zheng, Zhaohua Zhou, Ruipeng Chen, Jiajie Liu, Chun Liu, Lirong Zhang, Lei Zhou, Miao Xu, Lei Wang, Weijing Wu, Junbiao Peng\",\"doi\":\"10.1016/j.displa.2024.102889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Currently, Mura defects have a significant impact on the yield of AMOLED panels, and De-Mura plays a critical role in the compensation. To enhance the applicability of the subpixel luminance extraction method in De-Mura and to address inaccuracies caused by aperture diffraction limit and geometric defocusing in camera imaging, this paper proposes a precise extraction method based on effective area. We establish the concept of the effective area first and then determine the effective area of subpixel imaging on the camera sensor by incorporating the circle of confusion (CoC) caused by aperture diffraction limits and geometric defocusing. Finally, more precise luminance information is obtained. Results show that, after compensation, the Mura on the white screen is almost eliminated subjectively. Objectively, by constructing normalized luminance curves for subpixels in Mura regions, the standard deviation indicates that our method outperforms the traditional whole-pixel method, improving uniformity by approximately 50%.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"86 \",\"pages\":\"Article 102889\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938224002531\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224002531","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Precise subpixel luminance extraction method for De-Mura of AMOLED displays
Currently, Mura defects have a significant impact on the yield of AMOLED panels, and De-Mura plays a critical role in the compensation. To enhance the applicability of the subpixel luminance extraction method in De-Mura and to address inaccuracies caused by aperture diffraction limit and geometric defocusing in camera imaging, this paper proposes a precise extraction method based on effective area. We establish the concept of the effective area first and then determine the effective area of subpixel imaging on the camera sensor by incorporating the circle of confusion (CoC) caused by aperture diffraction limits and geometric defocusing. Finally, more precise luminance information is obtained. Results show that, after compensation, the Mura on the white screen is almost eliminated subjectively. Objectively, by constructing normalized luminance curves for subpixels in Mura regions, the standard deviation indicates that our method outperforms the traditional whole-pixel method, improving uniformity by approximately 50%.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.