稳健的图像描述符--局部径向分组不变阶图案

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-11-21 DOI:10.1016/j.ins.2024.121675
Xiangyang Wang, Yanqi Xu, Panpan Niu
{"title":"稳健的图像描述符--局部径向分组不变阶图案","authors":"Xiangyang Wang,&nbsp;Yanqi Xu,&nbsp;Panpan Niu","doi":"10.1016/j.ins.2024.121675","DOIUrl":null,"url":null,"abstract":"<div><div>Sorted-based LBP variants have been validated as effective grayscale inverse image classification methods. However, most of these methods encode the order of sampling points at the same scale and thus suffer from two problems: 1) Ignoring inter-scale correlation leads to descriptors that are not resistant to real scene changes. 2) The inherent flaws of sorted encoding cause descriptors to discriminate complex texture structures, showing low discriminability. To address these problems, we design the new scale-structure model and region encoding to realize a more robust and discriminative representation called Local Radial Grouped Invariant Order Pattern (LRGIOP). LRGIOP can effectively distinguish texture details in real scenes while resisting various complex imaging conditions. Experiments on several image databases show that the LRGIOP descriptor achieves state-of-the-art classification results under linear or even nonlinear grayscale-inversion transformations.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"693 ","pages":"Article 121675"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust image descriptor-local radial grouped invariant order pattern\",\"authors\":\"Xiangyang Wang,&nbsp;Yanqi Xu,&nbsp;Panpan Niu\",\"doi\":\"10.1016/j.ins.2024.121675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sorted-based LBP variants have been validated as effective grayscale inverse image classification methods. However, most of these methods encode the order of sampling points at the same scale and thus suffer from two problems: 1) Ignoring inter-scale correlation leads to descriptors that are not resistant to real scene changes. 2) The inherent flaws of sorted encoding cause descriptors to discriminate complex texture structures, showing low discriminability. To address these problems, we design the new scale-structure model and region encoding to realize a more robust and discriminative representation called Local Radial Grouped Invariant Order Pattern (LRGIOP). LRGIOP can effectively distinguish texture details in real scenes while resisting various complex imaging conditions. Experiments on several image databases show that the LRGIOP descriptor achieves state-of-the-art classification results under linear or even nonlinear grayscale-inversion transformations.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"693 \",\"pages\":\"Article 121675\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524015895\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015895","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于排序的 LBP 变体已被验证为有效的灰度反演图像分类方法。然而,这些方法大多对同一尺度的采样点顺序进行编码,因此存在两个问题:1)忽略尺度间的相关性会导致描述符无法抵抗真实场景的变化。2) 排序编码的固有缺陷导致描述符无法辨别复杂的纹理结构,表现出较低的可辨别性。为了解决这些问题,我们设计了新的尺度结构模型和区域编码,实现了一种更稳健、更具区分度的描述符,即局部径向分组不变阶序模式(Local Radial Grouped Invariant Order Pattern,LRGIOP)。LRGIOP 能有效区分真实场景中的纹理细节,同时还能抵御各种复杂的成像条件。在多个图像数据库中的实验表明,LRGIOP 描述符在线性甚至非线性灰度-反转变换下都能获得最先进的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust image descriptor-local radial grouped invariant order pattern
Sorted-based LBP variants have been validated as effective grayscale inverse image classification methods. However, most of these methods encode the order of sampling points at the same scale and thus suffer from two problems: 1) Ignoring inter-scale correlation leads to descriptors that are not resistant to real scene changes. 2) The inherent flaws of sorted encoding cause descriptors to discriminate complex texture structures, showing low discriminability. To address these problems, we design the new scale-structure model and region encoding to realize a more robust and discriminative representation called Local Radial Grouped Invariant Order Pattern (LRGIOP). LRGIOP can effectively distinguish texture details in real scenes while resisting various complex imaging conditions. Experiments on several image databases show that the LRGIOP descriptor achieves state-of-the-art classification results under linear or even nonlinear grayscale-inversion transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
An interpretable client decision tree aggregation process for federated learning Representation of quasi-overlap functions for normal convex fuzzy truth values based on generalized extended overlap functions A neural network transformation based global optimization algorithm Multi-criteria decision making with Hamacher aggregation operators based on multi-polar fuzzy Z-numbers MAHACO: Multi-algorithm hybrid ant colony optimizer for 3D path planning of a group of UAVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1