无扩散分子内三重-三重湮灭有助于提高有机发光二极管中的激子利用率

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-10-09 DOI:10.1002/adom.202401597
Sara Mattiello, Andrew Danos, Kleitos Stavrou, Alessandra Ronchi, Roman Baranovski, Domenico Florenzano, Francesco Meinardi, Luca Beverina, Andrew Monkman, Angelo Monguzzi
{"title":"无扩散分子内三重-三重湮灭有助于提高有机发光二极管中的激子利用率","authors":"Sara Mattiello,&nbsp;Andrew Danos,&nbsp;Kleitos Stavrou,&nbsp;Alessandra Ronchi,&nbsp;Roman Baranovski,&nbsp;Domenico Florenzano,&nbsp;Francesco Meinardi,&nbsp;Luca Beverina,&nbsp;Andrew Monkman,&nbsp;Angelo Monguzzi","doi":"10.1002/adom.202401597","DOIUrl":null,"url":null,"abstract":"<p>Triplet–triplet annihilation (TTA), or triplet fusion, is a biexcitonic process in which two triplet-excited molecules can combine their energy to promote one into an excited singlet state. To alleviate the dependence of the TTA rate and yield on triplet diffusion in both solid and solution environments, intramolecular TTA (intra-TTA) has been recently proposed in conjugated molecular systems able to hold multiple triplet excitons simultaneously. Developing from the previous demonstration of TTA performance enhancement in sensitized upconversion solutions, here similar improvements in triplet harvesting in solid-state films are reported under electrical excitation in organic light emitting diodes (OLEDs). At low dye concentration and low current densities, the intra-TTA active OLED shows a +40% improved external quantum efficiency with respect to the reference device, and a TTA spin-statistical factor <i>f</i> <sup>4DPA</sup> of 0.4, close to that determined in fluid solution for the individual chromophore (0.45). These results therefore indicate the utility of this molecular design strategy across a wider range of TTA applications, and with particular utility in the further development of low-power TTA-enhanced OLEDs.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 33","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401597","citationCount":"0","resultStr":"{\"title\":\"Diffusion-Free Intramolecular Triplet–Triplet Annihilation Contributes to the Enhanced Exciton Utilization in OLEDs\",\"authors\":\"Sara Mattiello,&nbsp;Andrew Danos,&nbsp;Kleitos Stavrou,&nbsp;Alessandra Ronchi,&nbsp;Roman Baranovski,&nbsp;Domenico Florenzano,&nbsp;Francesco Meinardi,&nbsp;Luca Beverina,&nbsp;Andrew Monkman,&nbsp;Angelo Monguzzi\",\"doi\":\"10.1002/adom.202401597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Triplet–triplet annihilation (TTA), or triplet fusion, is a biexcitonic process in which two triplet-excited molecules can combine their energy to promote one into an excited singlet state. To alleviate the dependence of the TTA rate and yield on triplet diffusion in both solid and solution environments, intramolecular TTA (intra-TTA) has been recently proposed in conjugated molecular systems able to hold multiple triplet excitons simultaneously. Developing from the previous demonstration of TTA performance enhancement in sensitized upconversion solutions, here similar improvements in triplet harvesting in solid-state films are reported under electrical excitation in organic light emitting diodes (OLEDs). At low dye concentration and low current densities, the intra-TTA active OLED shows a +40% improved external quantum efficiency with respect to the reference device, and a TTA spin-statistical factor <i>f</i> <sup>4DPA</sup> of 0.4, close to that determined in fluid solution for the individual chromophore (0.45). These results therefore indicate the utility of this molecular design strategy across a wider range of TTA applications, and with particular utility in the further development of low-power TTA-enhanced OLEDs.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 33\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401597\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401597\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401597","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三重-三重湮灭(TTA)或三重融合是一种双激发过程,在这一过程中,两个三重激发的分子可以结合它们的能量,使其中一个分子进入激发的单重态。为了缓解 TTA 速率和产率对固态和溶液环境中三重态扩散的依赖性,最近有人提出在能够同时容纳多个三重激子的共轭分子体系中进行分子内 TTA(intra-TTA)。根据之前在敏化上转换溶液中展示的 TTA 性能提升,本文报告了在有机发光二极管(OLED)电激励下固态薄膜中三重子收集的类似改进。在低染料浓度和低电流密度条件下,TTA 内活性 OLED 的外部量子效率比参考装置提高了 40%,TTA 自旋统计因子 f 4DPA 为 0.4,接近在流体溶液中测定的单个发色团的统计因子(0.45)。因此,这些结果表明这种分子设计策略适用于更广泛的 TTA 应用,尤其适用于进一步开发低功耗 TTA 增强型有机发光二极管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffusion-Free Intramolecular Triplet–Triplet Annihilation Contributes to the Enhanced Exciton Utilization in OLEDs

Triplet–triplet annihilation (TTA), or triplet fusion, is a biexcitonic process in which two triplet-excited molecules can combine their energy to promote one into an excited singlet state. To alleviate the dependence of the TTA rate and yield on triplet diffusion in both solid and solution environments, intramolecular TTA (intra-TTA) has been recently proposed in conjugated molecular systems able to hold multiple triplet excitons simultaneously. Developing from the previous demonstration of TTA performance enhancement in sensitized upconversion solutions, here similar improvements in triplet harvesting in solid-state films are reported under electrical excitation in organic light emitting diodes (OLEDs). At low dye concentration and low current densities, the intra-TTA active OLED shows a +40% improved external quantum efficiency with respect to the reference device, and a TTA spin-statistical factor f4DPA of 0.4, close to that determined in fluid solution for the individual chromophore (0.45). These results therefore indicate the utility of this molecular design strategy across a wider range of TTA applications, and with particular utility in the further development of low-power TTA-enhanced OLEDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Er:LiNbO3 Quantum Memory Platform Optimized with Dynamic Defect Annealing (Advanced Optical Materials 36/2024) Nanometric Ge Films for Ultrafast Modulation of THz Waves with Flexible Metasurface (Advanced Optical Materials 36/2024) Highly Refractive Transparent Half-Heuslers for Near Infrared Optics and Their Material Design (Advanced Optical Materials 36/2024) Masthead: (Advanced Optical Materials 36/2024) Retina-Like Neuromorphic Visual Sensor for Sensing Broad-Spectrum Ultraviolet Light (Advanced Optical Materials 35/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1